找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks for Identification, Prediction and Control; Duc Truong Pham,Xing Liu Book 1995 Springer-Verlag London Limited 1995 backpro

[復(fù)制鏈接]
樓主: panache
11#
發(fā)表于 2025-3-23 10:23:01 | 只看該作者
Book 1995Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a prior
12#
發(fā)表于 2025-3-23 14:34:38 | 只看該作者
Neuromorphic Fuzzy Controller Design,linear second-order plant and a non-linear plant are also given. In this chapter, it is assumed that the reader is familiar with fuzzy logic control and genetic algorithms. F or a basic introduction to these topics, see Appendix B and Appendix C.
13#
發(fā)表于 2025-3-23 19:30:15 | 只看該作者
Modelling and Prediction Using GMDH Networks,res (number of layers and number of units in each layer) are predefined and remain unchanged both during and after training. Successful identification is often dependent on proper pre-estimation of the network structure.
14#
發(fā)表于 2025-3-23 23:10:38 | 只看該作者
15#
發(fā)表于 2025-3-24 06:01:39 | 只看該作者
Artificial Neural Networks,Artificial neural networks are computational models of the brain. There are many types of neural networks representing the brain’s structure and operation with varying degrees of sophistication. This chapter provides an introduction to the main types of networks and presents examples of each type.
16#
發(fā)表于 2025-3-24 08:49:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:34 | 只看該作者
Robot Manipulator Control Using Neural Networks,The control of a multi-input-multi-output (MIMO) plant is a difficult problem when the plant is nonlinear and time-varying and there are dynamic interactions between the plant variables. A good example of such a plant is an articulated robot with two or more joints handling a changeable load.
18#
發(fā)表于 2025-3-24 15:54:14 | 只看該作者
Dynamic System Identification Using Recurrent Neural Networks,lements are connected in such a way that all signals flow in one direction from input units to output units. In recurrent networks there are both feedforward and feedback connections along which signals can propagate in opposite directions.
19#
發(fā)表于 2025-3-24 20:54:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:24:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 平阴县| 灯塔市| 鲁山县| 亳州市| 海兴县| 鸡泽县| 溆浦县| 岫岩| 巴南区| 南皮县| 如东县| 威远县| 巴彦淖尔市| 大同县| 峨眉山市| 新晃| 阿勒泰市| 宁武县| 乌兰察布市| 通辽市| 顺平县| 五家渠市| 红河县| 东源县| 柳江县| 建瓯市| 神池县| 盈江县| 仙游县| 晋中市| 许昌市| 临漳县| 松滋市| 陵水| 丹阳市| 拜城县| 舞阳县| 锦州市| 瓮安县| 灌南县|