找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks for Conditional Probability Estimation; Forecasting Beyond P Dirk Husmeier Book 1999 Springer-Verlag London Limited 1999 al

[復(fù)制鏈接]
樓主: 有靈感
51#
發(fā)表于 2025-3-30 08:24:39 | 只看該作者
Book 1999ective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the ‘targets‘), by which, ideally, the network learns the c
52#
發(fā)表于 2025-3-30 15:12:38 | 只看該作者
A Universal Approximator Network for Predicting Conditional Probability Densities, networks are presented, and their relation to a stochastic kernel expansion is noted. The chapter concludes with a comparison between these models and several relevant alternative approaches which have recently been introduced to the neural network community.
53#
發(fā)表于 2025-3-30 16:49:06 | 只看該作者
A Maximum Likelihood Training Scheme,s shown to suffer from considerable inherent convergence problems due to large curvature variations of the error surface. A simple rectification scheme based on a curvature-based shape modification of E is presented.
54#
發(fā)表于 2025-3-30 23:28:37 | 只看該作者
Demonstration: Committees of Networks Trained with Different Regularisation Schemes,heme is found to lead to superior results. However, when using network committees, under-regularisation can be advantageous, since it leads to a larger model diversity, as a result of which a more substantial decrease of the generalisation ‘error’ can be achieved.
55#
發(fā)表于 2025-3-31 04:55:16 | 只看該作者
56#
發(fā)表于 2025-3-31 07:04:27 | 只看該作者
Introduction, weather, or the economy, it is not possible to solve the equations of dynamics explicitly and to keep track of motion in the high dimensional state space. In these cases model-based forecasting becomes impossible and calls for a different prediction paradigm.
57#
發(fā)表于 2025-3-31 12:49:53 | 只看該作者
Benchmark Problems,l potential subject to Brownian dynamics. The resulting time series shows fast oscillation around one of two metastable states and occasional phase transitions between these two states. As a consequence of the latter, long-term predictions require a model that can capture bimodality.
58#
發(fā)表于 2025-3-31 15:07:47 | 只看該作者
59#
發(fā)表于 2025-3-31 20:19:53 | 只看該作者
60#
發(fā)表于 2025-4-1 01:38:12 | 只看該作者
Summary,sons discussed in Chapter 1, the distribution is likely to be distorted and may be multimodal. This suggests that, in general, it is not sufficient to train a network to predict only a single value, but that the complete probability distribution of the target conditional on the input vector should be modelled.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅江县| 天峻县| 宁波市| 巴林右旗| 昌江| 万安县| 静乐县| 邮箱| 桂平市| 通道| 扎兰屯市| 金华市| 博兴县| 仁寿县| 历史| 通道| 石嘴山市| 五指山市| 四会市| 耿马| 思茅市| 曲靖市| 双牌县| 九江市| 华安县| 鄂尔多斯市| 宜良县| 贵州省| 射洪县| 郧西县| 古交市| 永平县| 洮南市| 遵义市| 平泉县| 都昌县| 阳春市| 赤水市| 卓尼县| 福建省| 宾阳县|