找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks for Conditional Probability Estimation; Forecasting Beyond P Dirk Husmeier Book 1999 Springer-Verlag London Limited 1999 al

[復(fù)制鏈接]
查看: 17323|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:40:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Networks for Conditional Probability Estimation
副標題Forecasting Beyond P
編輯Dirk Husmeier
視頻videohttp://file.papertrans.cn/664/663714/663714.mp4
概述Provides unique, comprehensive coverage of generalisation and regularisation: Provides the first real-world test results for recent theoretical findings on the generalisation performance of committees
叢書名稱Perspectives in Neural Computing
圖書封面Titlebook: Neural Networks for Conditional Probability Estimation; Forecasting Beyond P Dirk Husmeier Book 1999 Springer-Verlag London Limited 1999 al
描述Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the ‘targets‘), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus- sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and ‘be- nign‘ Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network struc
出版日期Book 1999
關(guān)鍵詞algorithms; dynamical systems; neural network; neural networks; noise; pattern; pattern recognition; traini
版次1
doihttps://doi.org/10.1007/978-1-4471-0847-4
isbn_softcover978-1-85233-095-8
isbn_ebook978-1-4471-0847-4Series ISSN 1431-6854
issn_series 1431-6854
copyrightSpringer-Verlag London Limited 1999
The information of publication is updating

書目名稱Neural Networks for Conditional Probability Estimation影響因子(影響力)




書目名稱Neural Networks for Conditional Probability Estimation影響因子(影響力)學科排名




書目名稱Neural Networks for Conditional Probability Estimation網(wǎng)絡(luò)公開度




書目名稱Neural Networks for Conditional Probability Estimation網(wǎng)絡(luò)公開度學科排名




書目名稱Neural Networks for Conditional Probability Estimation被引頻次




書目名稱Neural Networks for Conditional Probability Estimation被引頻次學科排名




書目名稱Neural Networks for Conditional Probability Estimation年度引用




書目名稱Neural Networks for Conditional Probability Estimation年度引用學科排名




書目名稱Neural Networks for Conditional Probability Estimation讀者反饋




書目名稱Neural Networks for Conditional Probability Estimation讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:05:41 | 只看該作者
地板
發(fā)表于 2025-3-22 06:00:13 | 只看該作者
Dirk Husmeier PhDt this can actually only be the case at .?=?., at any finite temperature the ions will be deflected from their equilibrium positions and at a given time . there will be no periodic potential anymore. The consequences of this are to be examined in this chapter.
5#
發(fā)表于 2025-3-22 09:12:35 | 只看該作者
6#
發(fā)表于 2025-3-22 14:06:19 | 只看該作者
Dirk Husmeier PhDon in one dimension; Monte Carlo methods are also introduced and results are presented. Finally, band magnetism is discussed and the Stoner theory of band magnetism is derived from the Hubbard model in a mean field approximation. The giant magnetoresistance (GMR) effect is explained as a current app
7#
發(fā)表于 2025-3-22 18:22:13 | 只看該作者
Dirk Husmeier PhDic field to matter in a perturbative way, Rabi oscillations and the optical Stark effect are treated. The semiconductor Bloch equations for the occupation probabilities and the polarization taking into account the Coulomb interaction between the electrons (or between the electrons in the conduction
8#
發(fā)表于 2025-3-22 22:01:56 | 只看該作者
Dirk Husmeier PhD spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators, materials of significant importance for spin electronics, are discussed. Particular emphasis, hereby, is laid on the new type of topologically protected surface states with w
9#
發(fā)表于 2025-3-23 05:27:07 | 只看該作者
Dirk Husmeier PhDelopment of a detailed understanding of the surface electronic structure. On the theoretical side, the general approach is similar to that for the bulk crystal: In essence the one-electron approximation is used and one tries to solve the Schr?dinger equation for an electron near the surface. A varie
10#
發(fā)表于 2025-3-23 09:18:49 | 只看該作者
Dirk Husmeier PhDms per cm. must be studied against the background of about 10. atoms present in a bulk volume of one cm.. In surface and interface physics the appropriate geometry for a scattering experiment is thus the reflection geometry. Furthermore, only particles that do not penetrate too deeply into the solid
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑河市| 宜良县| 兴海县| 孝感市| 新河县| 德惠市| 抚顺县| 苏尼特左旗| 山东省| 南靖县| 邳州市| 连城县| 井陉县| 中西区| 蓬溪县| 泌阳县| 任丘市| 共和县| 兴隆县| 奉新县| 平南县| 太原市| 腾冲县| 法库县| 赣州市| 申扎县| 葵青区| 宁津县| 南陵县| 葵青区| 阿荣旗| 荆州市| 陆丰市| 灵石县| 淅川县| 惠州市| 个旧市| 和田县| 普格县| 那坡县| 广饶县|