找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[復(fù)制鏈接]
樓主: STH
61#
發(fā)表于 2025-4-1 02:17:45 | 只看該作者
A Framework for?Software Defect Prediction Using Optimal Hyper-Parameters of?Deep Neural Networkr Curve (AUC). Experimental results show that the ODNN framework outperforms base DNN (BDNN) with 11.90% (accuracy), 0.26 (f-measure), and 0.13 (AUC). The statistical analysis using Wilcoxon signed-rank test and Nemenyi test show that the proposed framework is more effective than state-of-the-art models.
62#
發(fā)表于 2025-4-1 07:54:35 | 只看該作者
Anomaly Detection in?Surveillance Videos Using Transformer Based Attention Modelort range dependencies in temporal domain. This gives us a better understanding of available videos. The proposed framework is validated on real-world dataset i.e. ShanghaiTech Campus dataset which results in competitive performance than current state-of-the-art methods. The model and the code are available at ..
63#
發(fā)表于 2025-4-1 12:50:23 | 只看該作者
Automating Patient-Level Lung Cancer Diagnosis in?Different Data Regimesprovide poor results for patient-level diagnosis. In this paper, we fill this gap by introducing an end-to-end methods with a CT scan on the input and the patient-level diagnosis on the output. We consider three approaches for three different data regimes to examine how stronger and weaker supervision influences the model performance.
64#
發(fā)表于 2025-4-1 14:49:14 | 只看該作者
65#
發(fā)表于 2025-4-1 18:33:14 | 只看該作者
66#
發(fā)表于 2025-4-2 00:54:05 | 只看該作者
HYCEDIS: HYbrid Confidence Engine for?Deep Document Intelligence Systemiented Anomaly Detector, trained to faithfully estimate its confidence on its outputs without the need of host models modification. We evaluate our architecture on real-wold datasets, not only outperforming competing confidence estimators by a huge margin but also demonstrating generalization ability to out-of-distribution data.
67#
發(fā)表于 2025-4-2 02:52:44 | 只看該作者
68#
發(fā)表于 2025-4-2 07:43:44 | 只看該作者
1865-0929 mation Processing, ICONIP 2022, held as a virtual event, November 22–26, 2022.?.The 213 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centere
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
忻城县| 四会市| 剑川县| 肇源县| 泰顺县| 荔波县| 巴林左旗| 石家庄市| 泰和县| 淅川县| 高要市| 永吉县| 麻阳| 家居| 安岳县| 五寨县| 巴中市| 左云县| 昌都县| 富裕县| 灵台县| 石台县| 平罗县| 项城市| 中宁县| 林口县| 东宁县| 进贤县| 会东县| 乌兰察布市| 建德市| 大新县| 理塘县| 海原县| 酒泉市| 大埔区| 古田县| 滦南县| 阳山县| 临沧市| 南漳县|