找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[復制鏈接]
樓主: STH
31#
發(fā)表于 2025-3-26 21:50:31 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:50 | 只看該作者
Multi-level 3DCNN with?Min-Max Ranking Loss for?Weakly-Supervised Video Anomaly Detection strategy from 3DCNN is proposed to extract the fine lower-level representation of the input video sequences. An efficient temporal dependency encoding is utilized further to capture the sharp change in untrimmed surveillance videos. The proposed method is evaluated on a widely used benchmark anomal
33#
發(fā)表于 2025-3-27 06:15:22 | 只看該作者
34#
發(fā)表于 2025-3-27 12:41:38 | 只看該作者
Vision Transformer-Based Federated Learning for?COVID-19 Detection Using Chest X-Raynlabeled datasets using pre-training, whereas federated learning enables participating clients to jointly train models without disclosing source data outside the originating site. We experimentally establish that our proposed Vision Transformer based Federated Learning architecture outperforms CNN b
35#
發(fā)表于 2025-3-27 15:59:13 | 只看該作者
36#
發(fā)表于 2025-3-27 19:13:17 | 只看該作者
37#
發(fā)表于 2025-3-28 00:45:52 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:01 | 只看該作者
Efficient-Nets and?Their Fuzzy Ensemble: An Approach for?Skin Cancer Classification After that, we combine the prediction probabilities of base classifiers using Choquet fuzzy integral to get the final predicted labels. The proposed architecture is evaluated based on ISIC multi-class skin cancer classification. The rewarded cross-entropy loss-based training regime showcased its su
39#
發(fā)表于 2025-3-28 09:29:32 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:31 | 只看該作者
A Multi-modal Graph Convolutional Network for?Predicting Human Breast Cancer Prognosiseast cancer, we proposed a novel classification model in this study, that is based on multi-modal graph convolutional networks (MGCN). To extract features, we first build a graph convolutional network (GCN) for individual modalities. And then, we feed the concatenated features generated by GCN into
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 11:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石门县| 阜新市| 南雄市| 来安县| 玉树县| 宁国市| 柳江县| 康定县| 腾冲县| 天柱县| 明光市| 吉木乃县| 稻城县| 开化县| 新营市| 平江县| 淮安市| 江口县| 黑河市| 剑川县| 闸北区| 白河县| 江阴市| 赤壁市| 读书| 娄底市| 家居| 新密市| 泸定县| 台湾省| 贵定县| 景洪市| 阜新市| 乌兰浩特市| 高阳县| 张家港市| 湖州市| 固阳县| 林西县| 临夏市| 江安县|