找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 27th International C Haiqin Yang,Kitsuchart Pasupa,Irwin King Conference proceedings 2020 Springer Nature Sw

[復制鏈接]
樓主: deflate
51#
發(fā)表于 2025-3-30 09:55:20 | 只看該作者
Trajectory Anomaly Detection Based on the Mean Distance Deviationl measures mentioned above and under the framework of enhanced conformal prediction theory detection, we also build our own detector called Mean Distance Deviation Detector (MDD-ECAD). Using a large number of synthetic trajectory data and real world trajectory data on two detectors, the experimental
52#
發(fā)表于 2025-3-30 14:58:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:46:09 | 只看該作者
pired SimSAX measure and clustering of subsequences (k-Means and Hierarchical clustering). Our results show that the clustering algorithms are much more sensitive to parameters and often find similarities that are not correct. SimSAX, on the other hand, can be calibrated to find fewer similarities b
54#
發(fā)表于 2025-3-30 22:20:02 | 只看該作者
55#
發(fā)表于 2025-3-31 01:32:36 | 只看該作者
Hongxi Wei,Jing Zhang,Kexin Liupired SimSAX measure and clustering of subsequences (k-Means and Hierarchical clustering). Our results show that the clustering algorithms are much more sensitive to parameters and often find similarities that are not correct. SimSAX, on the other hand, can be calibrated to find fewer similarities b
56#
發(fā)表于 2025-3-31 09:04:47 | 只看該作者
Kai Xue,Yiyu Ding,Zhirong Yang,Natasa Nord,Mael Roger Albert Barillec,Hans Martin Mathisen,Meng Liu,pired SimSAX measure and clustering of subsequences (k-Means and Hierarchical clustering). Our results show that the clustering algorithms are much more sensitive to parameters and often find similarities that are not correct. SimSAX, on the other hand, can be calibrated to find fewer similarities b
57#
發(fā)表于 2025-3-31 13:06:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
瓮安县| 平舆县| 阿克陶县| 布拖县| 太原市| 齐齐哈尔市| 黑龙江省| 安乡县| 蒙自县| 丹东市| 依兰县| 饶阳县| 肇源县| 南京市| 饶平县| 武功县| 扶绥县| 乌鲁木齐县| 冀州市| 武隆县| 钦州市| 江西省| 获嘉县| 乌拉特后旗| 垦利县| 达拉特旗| 武强县| 吉首市| 顺义区| 富民县| 绥棱县| 水富县| 苏尼特左旗| 东乡| 丰都县| 巫山县| 巧家县| 府谷县| 元朗区| 调兵山市| 长丰县|