找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 27th International C Haiqin Yang,Kitsuchart Pasupa,Irwin King Conference proceedings 2020 Springer Nature Sw

[復(fù)制鏈接]
樓主: deflate
31#
發(fā)表于 2025-3-27 00:08:41 | 只看該作者
Efficient Binary Multi-view Subspace Learning for Instance-Level Image Retrievalrts are devoted to instance retrieval problem. Besides, although multi-view hashing methods are capable of exploring the complementarity among multiple heterogeneous visual features, they heavily rely on massive labeled training data, and somewhat affects the real-world applications. In this paper,
32#
發(fā)表于 2025-3-27 02:38:24 | 只看該作者
Hyper-Sphere Support Vector Classifier with Hybrid Decision Strategyfication accuracy. But real application data are very complicated and relationships between classification bounding spheres are very complicated too. Based on detailed analysis of relationships between bounding hyper-spheres, a hybrid decision strategy is put forward to solve classification problem
33#
發(fā)表于 2025-3-27 07:29:58 | 只看該作者
34#
發(fā)表于 2025-3-27 09:42:03 | 只看該作者
35#
發(fā)表于 2025-3-27 13:47:19 | 只看該作者
Online Multi-objective Subspace Clustering for Streaming Dataustering is a technique where the subset of features that are used to represent a cluster are different for different clusters. Most of the streaming data clustering methods primarily optimize only a single objective function which limits the model in capturing only a particular shape or property. H
36#
發(fā)表于 2025-3-27 21:44:43 | 只看該作者
Predicting Information Diffusion Cascades Using Graph Attention Networksial recommendations on social platforms. This paper improves existing models and proposes an end-to-end deep learning method called CasGAT. The method of graph attention network is designed to optimize the processing of large networks. After that, we only need to pay attention to the characteristics
37#
發(fā)表于 2025-3-28 01:20:01 | 只看該作者
38#
發(fā)表于 2025-3-28 05:01:17 | 只看該作者
Simultaneous Customer Segmentation and Behavior Discoverymed Simultaneous Customer Segmentation and Utility Discovery (UtSeg), to discover customer segmentation without knowing specific forms of utility functions and parameters. For the segmentation based on BNP models, the unknown type of functions is usually modeled as a non-homogeneous point process (N
39#
發(fā)表于 2025-3-28 07:37:57 | 只看該作者
Structural Text Steganography Using Unseen Tag Attribute Values Aside from images, document files are one of the most exchanged attached content via electronic mailings. In this paper, we present a structural steganographic scheme based on unseen tag attribute values using office documents as the medium. Specifically, we use the XML file that builds the core of
40#
發(fā)表于 2025-3-28 13:17:04 | 只看該作者
Trajectory Anomaly Detection Based on the Mean Distance Deviation the abnormal trajectory from many trajectories has become a hot issue. In order to study trajectory anomaly detection better, we analyze the Sequential conformal anomaly detection in trajectories based on hausdorff distance (SNN-CAD) method, and propose a new measurement method of trajectory distan
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湾仔区| 唐河县| 龙井市| 亳州市| 通河县| 安康市| 将乐县| 靖安县| 阿克苏市| 昌江| 普洱| 河东区| 白城市| 平阳县| 依安县| 克拉玛依市| 宝应县| 中阳县| 体育| 哈巴河县| 珠海市| 满洲里市| 库尔勒市| 延寿县| 黔西县| 进贤县| 丰宁| 桃江县| 庆云县| 沧源| 靖安县| 曲麻莱县| 资溪县| 永福县| 调兵山市| 建始县| 百色市| 叙永县| 葵青区| 玉田县| 平原县|