找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 16856|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:16:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標題30th International C
編輯Biao Luo,Long Cheng,Chaojie Li
視頻videohttp://file.papertrans.cn/664/663595/663595.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable
描述The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.??.The?1274?papers presented in the proceedings set were carefully reviewed and selected from?652?submissions.?.The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2024
關(guān)鍵詞Affective and cognitive learning; Big data; Bioinformatics; Brain-machine interface; Computational finan
版次1
doihttps://doi.org/10.1007/978-981-99-8181-6
isbn_softcover978-981-99-8180-9
isbn_ebook978-981-99-8181-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:18 | 只看該作者
Neural Information Processing978-981-99-8181-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
板凳
發(fā)表于 2025-3-22 02:34:49 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/n/image/663595.jpg
地板
發(fā)表于 2025-3-22 05:22:49 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:47 | 只看該作者
Road Meteorological State Recognition in Extreme Weather Based on an Improved Mask-RCNNffic accidents can increase dramatically in winter or during seasonal changes when extreme weather often occurs. To achieve real-time and automatic RSC monitoring, this paper first proposes an improved Mask-RCNN model based on Swin Transformer and path aggregation feature pyramid network (PAFPN) as
6#
發(fā)表于 2025-3-22 13:36:54 | 只看該作者
I-RAFT: Optical Flow Estimation Model Based on?Multi-scale Initialization Strategynt performance improvements. However, existing models that employ recurrent neural networks to update optical flow from an initial value of 0 suffer from issues of instability and slow training. To address this, we propose a simple yet effective optical flow initialization module as part of the opti
7#
發(fā)表于 2025-3-22 18:26:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:38:47 | 只看該作者
LSiF: Log-Gabor Empowered Siamese Federated Learning for?Efficient Obscene Image Classification in?thole. It is crucial to tackle this problem by implementing efficient content moderation, educating users, and creating technologies and policies that foster a more secure and wholesome online atmosphere. To address this issue, this research proposes the Log-Gabor Empowered Siamese Federated Learning
9#
發(fā)表于 2025-3-23 05:01:32 | 只看該作者
Depth Normalized Stable View Synthesis supposed to be as close as possible to the scene content. We present Deep Normalized Stable View Synthesis (DNSVS), an NVS method for large-scale scenes based on the pipeline of Stable View Synthesis (SVS). SVS combines neural networks with the 3D scene representation obtained from structure-from-m
10#
發(fā)表于 2025-3-23 08:59:59 | 只看該作者
Exploring the?Integration of?Large Language Models into?Automatic Speech Recognition Systems: An Emp The increasing sophistication of LLMs, with their in-context learning capabilities and instruction-following behavior, has drawn significant attention in the field of Natural Language Processing (NLP). Our primary focus is to investigate the potential of using an LLM’s in-context learning capabilit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 安龙县| 宁津县| 双鸭山市| 浑源县| 安图县| 若羌县| 黄浦区| 正镶白旗| 长海县| 襄汾县| 拜城县| 成都市| 新源县| 赤壁市| 彰化县| 武穴市| 澳门| 甘肃省| 五莲县| 中宁县| 黄梅县| 内黄县| 昌宁县| 鄂托克旗| 道孚县| 通渭县| 安宁市| 曲麻莱县| 中江县| 都匀市| 怀来县| 舞阳县| 济阳县| 镇原县| 磐石市| 怀柔区| 锡林浩特市| 阳山县| 中卫市| 保靖县|