找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 16857|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:16:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Neural Information Processing
副標(biāo)題30th International C
編輯Biao Luo,Long Cheng,Chaojie Li
視頻videohttp://file.papertrans.cn/664/663595/663595.mp4
叢書(shū)名稱(chēng)Communications in Computer and Information Science
圖書(shū)封面Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable
描述The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.??.The?1274?papers presented in the proceedings set were carefully reviewed and selected from?652?submissions.?.The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2024
關(guān)鍵詞Affective and cognitive learning; Big data; Bioinformatics; Brain-machine interface; Computational finan
版次1
doihttps://doi.org/10.1007/978-981-99-8181-6
isbn_softcover978-981-99-8180-9
isbn_ebook978-981-99-8181-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱(chēng)Neural Information Processing影響因子(影響力)




書(shū)目名稱(chēng)Neural Information Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Neural Information Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing被引頻次




書(shū)目名稱(chēng)Neural Information Processing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing年度引用




書(shū)目名稱(chēng)Neural Information Processing年度引用學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing讀者反饋




書(shū)目名稱(chēng)Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:18 | 只看該作者
Neural Information Processing978-981-99-8181-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
板凳
發(fā)表于 2025-3-22 02:34:49 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/n/image/663595.jpg
地板
發(fā)表于 2025-3-22 05:22:49 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:47 | 只看該作者
Road Meteorological State Recognition in Extreme Weather Based on an Improved Mask-RCNNffic accidents can increase dramatically in winter or during seasonal changes when extreme weather often occurs. To achieve real-time and automatic RSC monitoring, this paper first proposes an improved Mask-RCNN model based on Swin Transformer and path aggregation feature pyramid network (PAFPN) as
6#
發(fā)表于 2025-3-22 13:36:54 | 只看該作者
I-RAFT: Optical Flow Estimation Model Based on?Multi-scale Initialization Strategynt performance improvements. However, existing models that employ recurrent neural networks to update optical flow from an initial value of 0 suffer from issues of instability and slow training. To address this, we propose a simple yet effective optical flow initialization module as part of the opti
7#
發(fā)表于 2025-3-22 18:26:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:38:47 | 只看該作者
LSiF: Log-Gabor Empowered Siamese Federated Learning for?Efficient Obscene Image Classification in?thole. It is crucial to tackle this problem by implementing efficient content moderation, educating users, and creating technologies and policies that foster a more secure and wholesome online atmosphere. To address this issue, this research proposes the Log-Gabor Empowered Siamese Federated Learning
9#
發(fā)表于 2025-3-23 05:01:32 | 只看該作者
Depth Normalized Stable View Synthesis supposed to be as close as possible to the scene content. We present Deep Normalized Stable View Synthesis (DNSVS), an NVS method for large-scale scenes based on the pipeline of Stable View Synthesis (SVS). SVS combines neural networks with the 3D scene representation obtained from structure-from-m
10#
發(fā)表于 2025-3-23 08:59:59 | 只看該作者
Exploring the?Integration of?Large Language Models into?Automatic Speech Recognition Systems: An Emp The increasing sophistication of LLMs, with their in-context learning capabilities and instruction-following behavior, has drawn significant attention in the field of Natural Language Processing (NLP). Our primary focus is to investigate the potential of using an LLM’s in-context learning capabilit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖西县| 瓮安县| 富宁县| 东兴市| 苏尼特右旗| 车险| 沛县| 新巴尔虎右旗| 芦溪县| 涿鹿县| 双峰县| 定州市| 黑水县| 晋州市| 伊川县| 哈密市| 上栗县| 新乡县| 澄江县| 阿瓦提县| 泾源县| 永新县| 绥江县| 昌吉市| 泰来县| 博白县| 东明县| 天柱县| 东莞市| 涪陵区| 江油市| 天柱县| 措勤县| 堆龙德庆县| 长兴县| 武汉市| 肇州县| 开原市| 滦平县| 九寨沟县| 绵竹市|