找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna

[復(fù)制鏈接]
查看: 45203|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:38:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Neural Information Processing
副標(biāo)題24th International C
編輯Derong Liu,Shengli Xie,El-Sayed M. El-Alfy
視頻videohttp://file.papertrans.cn/664/663572/663572.mp4
概述Includes supplementary material:
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna
描述The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 ?full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on?Machine Learning,?Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.?.
出版日期Conference proceedings 2017
關(guān)鍵詞Adaptive dynamic programming; Artificial intelligence; Biologically inspired computing; Brain-computer
版次1
doihttps://doi.org/10.1007/978-3-319-70087-8
isbn_softcover978-3-319-70086-1
isbn_ebook978-3-319-70087-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱Neural Information Processing影響因子(影響力)




書(shū)目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱Neural Information Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Neural Information Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Neural Information Processing被引頻次




書(shū)目名稱Neural Information Processing被引頻次學(xué)科排名




書(shū)目名稱Neural Information Processing年度引用




書(shū)目名稱Neural Information Processing年度引用學(xué)科排名




書(shū)目名稱Neural Information Processing讀者反饋




書(shū)目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:25:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:19 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:48:45 | 只看該作者
0302-9743 e proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 ?full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on?Machine Learning,
6#
發(fā)表于 2025-3-22 16:45:16 | 只看該作者
Fuzzy Self-Organizing Incremental Neural Network for Fuzzy Clusteringd due to the self-adjusting nodes and edges which fit the learning data incrementally. A removal of nodes and edges promises the robustness of the network to the noisy data. Experiments on artificial and real-world data prove the validity of the clustering method.
7#
發(fā)表于 2025-3-22 18:36:13 | 只看該作者
Topology Learning Embedding: A Fast and Incremental Method for Manifold Learninger way: it constructs a topology preserving network rapidly and incrementally through online input data; then with the Isomap-based embedding strategy, it achieves out-of-sample data embedding efficiently. Experiments on synthetic data and real-world handwritten digit data demonstrate that TLE is a promising method for dimensionality reduction.
8#
發(fā)表于 2025-3-22 22:51:43 | 只看該作者
Using Flexible Neural Trees to Seed BackpropagationWe show that putting the two methods together can yield very good results. The FNT solution can be embedded into a larger neural network that is then optimized using backpropagation. The combination of the two methods outperforms either method alone.
9#
發(fā)表于 2025-3-23 04:28:13 | 只看該作者
Improving Generalization Capability of Extreme Learning Machine with Synthetic Instances Generation based on 4 representative regression datasets of KEEL demonstrate that our proposed SIGELM obviously improves the generalization capability of ELM and effectively decreases the phenomenon of over-fitting.
10#
發(fā)表于 2025-3-23 05:41:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭平县| 康保县| 堆龙德庆县| 靖远县| 西贡区| 扎赉特旗| 突泉县| 江都市| 康乐县| 麦盖提县| 通辽市| 松江区| 佳木斯市| 周口市| 偃师市| 年辖:市辖区| 长阳| 左贡县| 自治县| 金乡县| 仙游县| 怀安县| 莱西市| 平顺县| 大荔县| 广饶县| 个旧市| 云和县| 景谷| 利津县| 吴旗县| 宝清县| 永胜县| 安新县| 和平县| 府谷县| 海原县| 慈溪市| 漳浦县| 龙南县| 兖州市|