找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna

[復(fù)制鏈接]
查看: 45192|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:38:15 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標題24th International C
編輯Derong Liu,Shengli Xie,El-Sayed M. El-Alfy
視頻videohttp://file.papertrans.cn/664/663572/663572.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna
描述The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 ?full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on?Machine Learning,?Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.?.
出版日期Conference proceedings 2017
關(guān)鍵詞Adaptive dynamic programming; Artificial intelligence; Biologically inspired computing; Brain-computer
版次1
doihttps://doi.org/10.1007/978-3-319-70087-8
isbn_softcover978-3-319-70086-1
isbn_ebook978-3-319-70087-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:25:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:19 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:48:45 | 只看該作者
0302-9743 e proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 ?full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on?Machine Learning,
6#
發(fā)表于 2025-3-22 16:45:16 | 只看該作者
Fuzzy Self-Organizing Incremental Neural Network for Fuzzy Clusteringd due to the self-adjusting nodes and edges which fit the learning data incrementally. A removal of nodes and edges promises the robustness of the network to the noisy data. Experiments on artificial and real-world data prove the validity of the clustering method.
7#
發(fā)表于 2025-3-22 18:36:13 | 只看該作者
Topology Learning Embedding: A Fast and Incremental Method for Manifold Learninger way: it constructs a topology preserving network rapidly and incrementally through online input data; then with the Isomap-based embedding strategy, it achieves out-of-sample data embedding efficiently. Experiments on synthetic data and real-world handwritten digit data demonstrate that TLE is a promising method for dimensionality reduction.
8#
發(fā)表于 2025-3-22 22:51:43 | 只看該作者
Using Flexible Neural Trees to Seed BackpropagationWe show that putting the two methods together can yield very good results. The FNT solution can be embedded into a larger neural network that is then optimized using backpropagation. The combination of the two methods outperforms either method alone.
9#
發(fā)表于 2025-3-23 04:28:13 | 只看該作者
Improving Generalization Capability of Extreme Learning Machine with Synthetic Instances Generation based on 4 representative regression datasets of KEEL demonstrate that our proposed SIGELM obviously improves the generalization capability of ELM and effectively decreases the phenomenon of over-fitting.
10#
發(fā)表于 2025-3-23 05:41:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东兰县| 万荣县| 若羌县| 万宁市| 若尔盖县| 潞西市| 阿克苏市| 庄浪县| 平武县| 托克托县| 晋江市| 高密市| 喀什市| 磴口县| 任丘市| 淮安市| 崇明县| 滕州市| 和顺县| 报价| 汝城县| 分宜县| 吉林市| 亚东县| 从化市| 扎赉特旗| 永登县| 林州市| 河西区| 许昌市| 河北区| 江西省| 堆龙德庆县| 达拉特旗| 康定县| 徐水县| 郸城县| 阿坝县| 墨竹工卡县| 滦平县| 家居|