找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Negative Quantum Channels; James M. McCracken Book 2014 Springer Nature Switzerland AG 2014

[復制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 12:56:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:26:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:02:05 | 只看該作者
Negative Quantum Channels978-3-031-02517-4Series ISSN 1945-9726 Series E-ISSN 1945-9734
14#
發(fā)表于 2025-3-24 01:07:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:36 | 只看該作者
Measures of Complete Positivity,simple conditions. If the composite dynamics are described by “l(fā)ocal unitaries” or if the initial composite state has “zero discord,” then completely positive dynamics are guaranteed. These proofs are shown below. Other cases require directly testing the system for complete positivity.
16#
發(fā)表于 2025-3-24 07:02:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:43 | 只看該作者
Physical Motivations for Sharp Operations, some point in time, and preparing the reduced system will only leave the bath completely unaffected if the reduced system is isolated. In such cases, there is no need to discuss baths, complete positivity, or sharp operations.
18#
發(fā)表于 2025-3-24 14:55:12 | 只看該作者
Introduction and Definition of Terms, These are some of the commonly used notations for this work. Most of the non-standard notation is introduced and explained in dedicated sections of this chapter, but this table is a quick reference for the sets and spaces used throughout.
19#
發(fā)表于 2025-3-24 21:15:13 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:05 | 只看該作者
Uses for Negative Channels,So far, one of the most important questions about negativity has been completely ignored in this work. Is negativity useful? This section will focus on that question.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
合山市| 尼勒克县| 余干县| 虎林市| 靖边县| 曲周县| 辛集市| SHOW| 保靖县| 三河市| 铁岭县| 皮山县| 孟连| 蛟河市| 巴青县| 江达县| 彝良县| 利辛县| 长海县| 丹棱县| 高州市| 龙南县| 工布江达县| 合川市| 灵璧县| 宣化县| 鄱阳县| 尉犁县| 琼海市| 石台县| 鹰潭市| 凤山市| 翁牛特旗| 定安县| 凤翔县| 额济纳旗| 肃北| 山东| 来凤县| 科技| 旬阳县|