找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Negative Quantum Channels; James M. McCracken Book 2014 Springer Nature Switzerland AG 2014

[復(fù)制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 12:56:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:26:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:02:05 | 只看該作者
Negative Quantum Channels978-3-031-02517-4Series ISSN 1945-9726 Series E-ISSN 1945-9734
14#
發(fā)表于 2025-3-24 01:07:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:36 | 只看該作者
Measures of Complete Positivity,simple conditions. If the composite dynamics are described by “l(fā)ocal unitaries” or if the initial composite state has “zero discord,” then completely positive dynamics are guaranteed. These proofs are shown below. Other cases require directly testing the system for complete positivity.
16#
發(fā)表于 2025-3-24 07:02:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:43 | 只看該作者
Physical Motivations for Sharp Operations, some point in time, and preparing the reduced system will only leave the bath completely unaffected if the reduced system is isolated. In such cases, there is no need to discuss baths, complete positivity, or sharp operations.
18#
發(fā)表于 2025-3-24 14:55:12 | 只看該作者
Introduction and Definition of Terms, These are some of the commonly used notations for this work. Most of the non-standard notation is introduced and explained in dedicated sections of this chapter, but this table is a quick reference for the sets and spaces used throughout.
19#
發(fā)表于 2025-3-24 21:15:13 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:05 | 只看該作者
Uses for Negative Channels,So far, one of the most important questions about negativity has been completely ignored in this work. Is negativity useful? This section will focus on that question.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合山市| 安康市| 广东省| 金秀| 璧山县| 且末县| 宝山区| 石嘴山市| 嘉荫县| 五莲县| 双牌县| 云阳县| 即墨市| 七台河市| 开鲁县| 调兵山市| 阿拉善盟| 棋牌| 六枝特区| 洛宁县| 宜城市| 茂名市| 长宁区| 兖州市| 东乡| 安化县| 连南| 镇江市| 阿克苏市| 泰来县| 福贡县| 唐海县| 九江市| 江北区| 左权县| 芜湖县| 庆阳市| 商南县| 包头市| 绥滨县| 天气|