找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Navier–Stokes Equations on R3 × [0, T]; Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S

[復(fù)制鏈接]
查看: 52132|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:39:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]
編輯Frank Stenger,Don Tucker,Gerd Baumann
視頻videohttp://file.papertrans.cn/663/662191/662191.mp4
概述Studies the properties of solutions.of the Navier–Stokes partial differential equations on (x , y, z , t) ? R3 × [0, T].Demonstrates a new method for.determining solutions of the Navier–Stokes equatio
圖書(shū)封面Titlebook: Navier–Stokes Equations on R3 × [0, T];  Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S
描述.In this monograph, leading researchers in the world ofnumerical analysis, partial differential equations, and hard computationalproblems study the properties of solutions of the Navier–Stokes. .partial differential equations on (x, y, z,t) ∈ ?.3. × [0, .T.]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces .A. of analytic functions that housesolutions of this equation, and show that these spaces of analytic functionsare dense in the spaces .S. of rapidlydecreasing and infinitely differentiable functions. This method benefits fromthe following advantages:. .The functions of S are nearly always conceptual rather than explicit. .Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties. .When methods ofapproximation are applied to functions of .A. they converge at an exponential rate, whereas methods of approximation applied to the functions of .S. converge only at a polynomial rate. .Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more ef
出版日期Book 2016
關(guān)鍵詞Navier-Stokes Equations; Numerical Methods for Solving Navier-Stokes Equations; Partial Differential E
版次1
doihttps://doi.org/10.1007/978-3-319-27526-0
isbn_softcover978-3-319-80162-9
isbn_ebook978-3-319-27526-0
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]影響因子(影響力)




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]影響因子(影響力)學(xué)科排名




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]被引頻次




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]被引頻次學(xué)科排名




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]年度引用




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]年度引用學(xué)科排名




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]讀者反饋




書(shū)目名稱Navier–Stokes Equations on R3 × [0, T]讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:51 | 只看該作者
Introduction, PDE, and IE Formulations,In this chapter we first state the Navier–Stokes (N–S) problem as a system of nonlinear partial differential equations (PDE) along with initial conditions. We then convert this system of PDE to a system of integral equations (IE).
板凳
發(fā)表于 2025-3-22 04:00:54 | 只看該作者
Proof of Convergence of Iteration (1.25),We prove that if the initial vector .. belongs to the Banach space . defined in Definition?., then the iterative sequence of functions defined as in?(.) converges to a unique solution for all . sufficiently small.
地板
發(fā)表于 2025-3-22 05:17:23 | 只看該作者
5#
發(fā)表于 2025-3-22 10:20:39 | 只看該作者
6#
發(fā)表于 2025-3-22 14:14:56 | 只看該作者
7#
發(fā)表于 2025-3-22 21:02:13 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:29 | 只看該作者
9#
發(fā)表于 2025-3-23 01:57:53 | 只看該作者
Book 2016operties of solutions of the Navier–Stokes. .partial differential equations on (x, y, z,t) ∈ ?.3. × [0, .T.]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces .A. of analytic functions that housesolutions of this equation, and show that these spaces of
10#
發(fā)表于 2025-3-23 05:33:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥宁县| 八宿县| 神池县| 黑龙江省| 确山县| 华蓥市| 邵武市| 丰台区| 丘北县| 鞍山市| 石林| 农安县| 仙居县| 象州县| 渑池县| 广东省| 蚌埠市| 津市市| 同仁县| 浮山县| 怀宁县| 甘南县| 阳泉市| 卓尼县| 龙门县| 青田县| 阳曲县| 南投市| 壤塘县| 蒙城县| 桃园市| 阳信县| 军事| 龙山县| 垦利县| 吉木萨尔县| 邵武市| 象州县| 蓬溪县| 酉阳| 锡林郭勒盟|