書目名稱 | Navier–Stokes Equations on R3 × [0, T] | 編輯 | Frank Stenger,Don Tucker,Gerd Baumann | 視頻video | http://file.papertrans.cn/663/662191/662191.mp4 | 概述 | Studies the properties of solutions.of the Navier–Stokes partial differential equations on (x , y, z , t) ? R3 × [0, T].Demonstrates a new method for.determining solutions of the Navier–Stokes equatio | 圖書封面 | ![Titlebook: Navier–Stokes Equations on R3 × [0, T]; Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S Titlebook: Navier–Stokes Equations on R3 × [0, T]; Frank Stenger,Don Tucker,Gerd Baumann Book 2016 Springer International Publishing AG 2016 Navier-S](http://image.papertrans.cn/n/image/662191.jpg) | 描述 | .In this monograph, leading researchers in the world ofnumerical analysis, partial differential equations, and hard computationalproblems study the properties of solutions of the Navier–Stokes. .partial differential equations on (x, y, z,t) ∈ ?.3. × [0, .T.]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces .A. of analytic functions that housesolutions of this equation, and show that these spaces of analytic functionsare dense in the spaces .S. of rapidlydecreasing and infinitely differentiable functions. This method benefits fromthe following advantages:. .The functions of S are nearly always conceptual rather than explicit. .Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties. .When methods ofapproximation are applied to functions of .A. they converge at an exponential rate, whereas methods of approximation applied to the functions of .S. converge only at a polynomial rate. .Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more ef | 出版日期 | Book 2016 | 關(guān)鍵詞 | Navier-Stokes Equations; Numerical Methods for Solving Navier-Stokes Equations; Partial Differential E | 版次 | 1 | doi | https://doi.org/10.1007/978-3-319-27526-0 | isbn_softcover | 978-3-319-80162-9 | isbn_ebook | 978-3-319-27526-0 | copyright | Springer International Publishing AG 2016 |
The information of publication is updating
書目名稱Navier–Stokes Equations on R3 × [0, T]影響因子(影響力) 
書目名稱Navier–Stokes Equations on R3 × [0, T]影響因子(影響力)學(xué)科排名 
書目名稱Navier–Stokes Equations on R3 × [0, T]網(wǎng)絡(luò)公開度 
書目名稱Navier–Stokes Equations on R3 × [0, T]網(wǎng)絡(luò)公開度學(xué)科排名 
書目名稱Navier–Stokes Equations on R3 × [0, T]被引頻次 
書目名稱Navier–Stokes Equations on R3 × [0, T]被引頻次學(xué)科排名 
書目名稱Navier–Stokes Equations on R3 × [0, T]年度引用 
書目名稱Navier–Stokes Equations on R3 × [0, T]年度引用學(xué)科排名 
書目名稱Navier–Stokes Equations on R3 × [0, T]讀者反饋 
書目名稱Navier–Stokes Equations on R3 × [0, T]讀者反饋學(xué)科排名 
|
|
|