找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 11th CCF Internation Wei Lu,Shujian Huang,Xiabing Zhou Conference proceedings 2022 The E

[復(fù)制鏈接]
樓主: 貪求
41#
發(fā)表于 2025-3-28 15:31:47 | 只看該作者
42#
發(fā)表于 2025-3-28 21:35:18 | 只看該作者
Contrastive Learning for?Robust Neural Machine Translation with?ASR Errorsso very brittle and easily falter when fed with noisy sentences, i.e., from automatic speech recognition (ASR) output. Due to the lack of Chinese-to-English translation test set with natural Chinese-side ASR output, related studies artificially add noise into Chinese sentences to evaluation translat
43#
發(fā)表于 2025-3-29 02:25:04 | 只看該作者
44#
發(fā)表于 2025-3-29 04:35:05 | 只看該作者
45#
發(fā)表于 2025-3-29 08:43:31 | 只看該作者
Regularized Contrastive Learning of?Semantic Searchroperly learn the semantics of sentences. Transformer-based models are widely used as retrieval models due to their excellent ability to learn semantic representations. in the meantime, many regularization methods suitable for them have also been proposed. In this paper, we propose a new regularizat
46#
發(fā)表于 2025-3-29 13:59:29 | 只看該作者
Kformer: Knowledge Injection in?Transformer Feed-Forward Layersthe PTMs’ own ability with quantities of implicit knowledge stored in parameters. A recent study [.] has observed knowledge neurons in the Feed Forward Network (FFN), which are responsible for expressing factual knowledge. In this work, we propose a simple model, Kformer, which takes advantage of th
47#
發(fā)表于 2025-3-29 18:08:21 | 只看該作者
Doge Tickets: Uncovering Domain-General Language Models by?Playing Lottery Ticketsrning capacity of LMs can also lead to large learning variance. In a pilot study, we find that, when faced with multiple domains, a critical portion of parameters behave unexpectedly in a domain-specific manner while others behave in a domain-general one. Motivated by this phenomenon, we for the fir
48#
發(fā)表于 2025-3-29 21:55:37 | 只看該作者
BART-Reader: Predicting Relations Between Entities via?Reading Their Document-Level Context Informat separate entities, the importance of its mentions varies, which means the entity representation should be different. However, most of the previous RE models failed to make the relation classification entity-pair aware effectively. To that end, we propose a novel adaptation to simultaneously utilize
49#
發(fā)表于 2025-3-30 00:17:21 | 只看該作者
50#
發(fā)表于 2025-3-30 07:11:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会理县| 伊吾县| 大埔区| 荔波县| 灵寿县| 大田县| 龙井市| 克拉玛依市| 明溪县| 靖边县| 吴旗县| 克东县| 长白| 桑植县| 固始县| 辽源市| 精河县| 苏尼特左旗| 沂源县| 安远县| 湟源县| 明光市| 彰化县| 彭泽县| 福海县| 赣榆县| 从江县| 杨浦区| 阜宁县| 五大连池市| 浏阳市| 云南省| 延长县| 贵州省| 成安县| 葫芦岛市| 三明市| 柳河县| 长子县| 克拉玛依市| 哈巴河县|