找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 11th CCF Internation Wei Lu,Shujian Huang,Xiabing Zhou Conference proceedings 2022 The E

[復(fù)制鏈接]
樓主: 貪求
21#
發(fā)表于 2025-3-25 06:23:15 | 只看該作者
DuEE-Fin: A Large-Scale Dataset for?Document-Level Event Extractionted an open competition, which has attracted 1,690 teams and achieved exciting results. We performed experiments on DuEE-Fin with most popular document-level event extraction systems. However, results showed that even some SOTA models performed poorly with our data. Facing these challenges, we found it necessary to propose more effective methods.
22#
發(fā)表于 2025-3-25 09:32:49 | 只看該作者
Temporal Relation Extraction on Time Anchoring and Negative Denoisingrt and the end time-points). Moreover, we introduce a negative denoising mechanism to effectively reduce ambiguousness for the whole model. Experimental results on three datasets prove that our TAM significantly outperforms the SOTA baselines.
23#
發(fā)表于 2025-3-25 14:38:41 | 只看該作者
PGBERT: Phonology and?Glyph Enhanced Pre-training for?Chinese Spelling Correctionch layer of original model, PGBERT extends extra channels for phonology and glyph encoding respectively, then performs a multi-channel fusion function and a residual connection to yield an output for each channel. Empirical analysis shows PGBERT is a powerful method for CSC and achieves state-of-the-art performance on widely-used benchmarks.
24#
發(fā)表于 2025-3-25 17:16:08 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:11 | 只看該作者
Conference proceedings 2022 Computing, NLPCC 2022, held in Guilin, China, in September 2022..The 62 full papers, 21 poster papers, and 27 workshop papers presented were carefully reviewed and selected from 327 submissions. They are organized in the following areas: Fundamentals of NLP; Machine Translation and Multilinguality;
26#
發(fā)表于 2025-3-26 00:53:23 | 只看該作者
27#
發(fā)表于 2025-3-26 05:43:49 | 只看該作者
28#
發(fā)表于 2025-3-26 12:18:21 | 只看該作者
Multi-task Learning with Auxiliary Cross-attention Transformer for Low-Resource Multi-dialect Speechsk stream, so that the primary task stream has dialect discrimination. Experimental results on the task of Tibetan multi-dialect speech recognition show that our model outperforms the single-dialect model and hard parameter sharing based multi-dialect model, by reducing the average syllable error rate (ASER) by 30.22% and 3.89%, respectively.
29#
發(fā)表于 2025-3-26 14:26:13 | 只看該作者
Conference proceedings 2022 Machine Learning for NLP; Information Extraction and Knowledge Graph; Summarization and Generation; Question Answering; Dialogue Systems; Social Media and Sentiment Analysis; NLP Applications and Text Mining; and Multimodality and Explainability..
30#
發(fā)表于 2025-3-26 19:59:23 | 只看該作者
0302-9743 inguality; Machine Learning for NLP; Information Extraction and Knowledge Graph; Summarization and Generation; Question Answering; Dialogue Systems; Social Media and Sentiment Analysis; NLP Applications and Text Mining; and Multimodality and Explainability..978-3-031-17119-2978-3-031-17120-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
息烽县| 宜阳县| 宜兰市| 大兴区| 乌拉特前旗| 金坛市| 元江| 明溪县| 日喀则市| 泰兴市| 梅河口市| 河南省| 内乡县| 三亚市| 普定县| 广安市| 会同县| 河池市| 西昌市| 宝丰县| 如东县| 柞水县| 焦作市| 东丰县| 延边| 澄江县| 峡江县| 迁西县| 巴东县| 玉树县| 明溪县| 蒲城县| 元阳县| 石狮市| 远安县| 大同县| 长汀县| 肥城市| 九龙县| 庄浪县| 隆化县|