找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin

[復制鏈接]
樓主: Hallucination
51#
發(fā)表于 2025-3-30 09:31:51 | 只看該作者
52#
發(fā)表于 2025-3-30 16:03:15 | 只看該作者
Response Selection of Multi-turn Conversation with Deep Neural Networksce, and ensemble of two models makes good improvement. The official results show that our solution takes 2nd place. We open the source of our code on GitHub, so that other researchers can reproduce easily.
53#
發(fā)表于 2025-3-30 20:32:26 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:40 | 只看該作者
55#
發(fā)表于 2025-3-31 02:44:38 | 只看該作者
Conference proceedings 2018inese Computing, NLPCC 2018, held in Hohhot, China, in August 2018.. ..The 55 full papers and 31 short papers presented were carefully reviewed and selected from 308 submissions. The papers of the first volume are organized in the following topics: conversational Bot/QA/IR; knowledge graph/IE; machi
56#
發(fā)表于 2025-3-31 07:53:14 | 只看該作者
0302-9743 ing and Chinese Computing, NLPCC 2018, held in Hohhot, China, in August 2018.. ..The 55 full papers and 31 short papers presented were carefully reviewed and selected from 308 submissions. The papers of the first volume are organized in the following topics: conversational Bot/QA/IR; knowledge graph
57#
發(fā)表于 2025-3-31 13:16:17 | 只看該作者
Learning to Converse Emotionally Like Humans: A Conditional Variational Approach emotion category for the response. We propose a new neural conversation model which is able to produce reasonable emotion interaction and generate emotional expressions. Experiments show that our proposed approaches can generate appropriate emotion and yield significant improvements over the baseline methods in emotional conversation.
58#
發(fā)表于 2025-3-31 15:56:12 | 只看該作者
59#
發(fā)表于 2025-3-31 19:58:37 | 只看該作者
Effective Character-Augmented Word Embedding for Machine Reading Comprehensionrepresentation to augment word embedding with a short list to improve word representations, especially for rare words. Experimental results show that the proposed approach helps the baseline model significantly outperform state-of-the-art baselines on various public benchmarks.
60#
發(fā)表于 2025-3-31 21:42:06 | 只看該作者
A Neural Question Generation System Based on Knowledge Basee design a new format of input sequence for the system, which promotes the performance of the model. On the evaluation of KBQG of NLPCC 2018 Shared Task 7, our system achieved 73.73 BLEU, and took the first place in the evaluation.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-25 17:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清苑县| 潮安县| 南丹县| 汤阴县| 枞阳县| 遂平县| 肃南| 灵川县| 荥经县| 二连浩特市| 兴宁市| 莫力| 温泉县| 沧州市| 广宗县| 嘉义县| 礼泉县| 安宁市| 曲靖市| 永城市| 万荣县| 会宁县| 莫力| 沁阳市| 沐川县| 济源市| 洪雅县| 潞城市| 文昌市| 应用必备| 吉首市| 六盘水市| 平乐县| 和平区| 静乐县| 陈巴尔虎旗| 合阳县| 蛟河市| 常山县| 肇东市| 新建县|