找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin

[復(fù)制鏈接]
樓主: Hallucination
31#
發(fā)表于 2025-3-27 00:37:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:00:10 | 只看該作者
33#
發(fā)表于 2025-3-27 08:19:16 | 只看該作者
34#
發(fā)表于 2025-3-27 10:18:06 | 只看該作者
From Plots to Endings: A Reinforced Pointer Generator for Story Ending Generatione a framework consisting of a Generator and a Reward Manager for this task. The Generator follows the pointer-generator network with coverage mechanism to deal with out-of-vocabulary (OOV) and repetitive words. Moreover, a mixed loss method is introduced to enable the Generator to produce story endi
35#
發(fā)表于 2025-3-27 17:12:39 | 只看該作者
A3Net:Adversarial-and-Attention Network for Machine Reading Comprehensionwo perspectives. First, adversarial training is applied to several target variables within the model, rather than only to the inputs or embeddings. We control the norm of adversarial perturbations according to the norm of original target variables, so that we can jointly add perturbations to several
36#
發(fā)表于 2025-3-27 21:21:02 | 只看該作者
37#
發(fā)表于 2025-3-27 22:17:58 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:06 | 只看該作者
Learning to Converse Emotionally Like Humans: A Conditional Variational Approachnt research hotspot. Although several emotional conversation approaches have been introduced, none of these methods were able to decide an appropriate emotion category for the response. We propose a new neural conversation model which is able to produce reasonable emotion interaction and generate em
39#
發(fā)表于 2025-3-28 06:49:17 | 只看該作者
Response Selection of Multi-turn Conversation with Deep Neural Networkss, the task is to choose the most reasonable response for the context. It can be regarded as a matching problem. To address this task, we propose a deep neural model named RCMN which focus on modeling relevance consistency of conversations. In addition, we adopt one existing deep learning model whic
40#
發(fā)表于 2025-3-28 10:54:40 | 只看該作者
Learning Dialogue History for Spoken Language Understandingesentations. SLU usually consists of two parts, namely intent identification and slot filling. Although many methods have been proposed for SLU, these methods generally process each utterance individually, which loses context information in dialogues. In this paper, we propose a hierarchical LSTM ba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广灵县| 云梦县| 镇平县| 新化县| 随州市| 南和县| 沙河市| 瓦房店市| 海盐县| 香河县| 蒲城县| 和田县| 漾濞| 邵阳市| 印江| 霍山县| 九江市| 田东县| 卓尼县| 兴海县| 高平市| 富锦市| 宜黄县| 天门市| 闵行区| 塔河县| 中卫市| 陵水| 西城区| 云龙县| 榆中县| 太康县| 莱州市| 法库县| 花莲市| 景泰县| 纳雍县| 临安市| 汉沽区| 德昌县| 北票市|