找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Naive Set Theory; Paul R. Halmos Book 1974 Springer Science+Business Media New York 1974 addition.arithmetic.Cardinal number.Countable set

[復(fù)制鏈接]
樓主: 母牛膽小鬼
41#
發(fā)表于 2025-3-28 15:36:40 | 只看該作者
The Axiom of Specification,t of these basic principles of set manufacture says, roughly speaking, that anything intelligent one can assert about the elements of a set specifies a subset, namely, the subset of those elements about which the assertion is true.
42#
發(fā)表于 2025-3-28 20:48:18 | 只看該作者
Inverses and Composites,ch subset A of . the image subset .(.) of .. The algebraic behavior of the mapping . → .(.) leaves something to be desired. It is true that if {..} is a family of subsets of ., then.(proof?), but the corresponding equation for intersections is false in general (example?), and the connection between images and complements is equally unsatisfactory.
43#
發(fā)表于 2025-3-28 23:15:03 | 只看該作者
,Zorn’s Lemma,ormulated (or, if need be, reformulated) so that the underlying set is a partially ordered set and the crucial property is maximality. Our next purpose is to state and prove the most important theorem of this kind.
44#
發(fā)表于 2025-3-29 07:00:45 | 只看該作者
Transfinite Recursion,way of getting the value of the function at each non-zero element . of . from its value at the element preceding .. The transfinite analogue constructs a function on any well ordered set .; the raw material is a way of getting the value of the function at each element . of . from its values at all the predecessors of ..
45#
發(fā)表于 2025-3-29 08:13:47 | 只看該作者
Ordinal Numbers,ntains .. What happens if we start with ., form its successor .., then form the successor of that, and proceed so on ad infinitum? In other words: is there something out beyond ., .., (..)., ?, etc., in the same sense in which . is beyond 0, 1, 2, ?, etc.?
46#
發(fā)表于 2025-3-29 12:25:02 | 只看該作者
978-0-387-90104-6Springer Science+Business Media New York 1974
47#
發(fā)表于 2025-3-29 19:12:44 | 只看該作者
Naive Set Theory978-1-4757-1645-0Series ISSN 0172-6056 Series E-ISSN 2197-5604
48#
發(fā)表于 2025-3-29 23:48:56 | 只看該作者
Unordered Pairs,For all that has been said so far, we might have been operating in a vacuum.
49#
發(fā)表于 2025-3-30 00:39:45 | 只看該作者
Complements and Powers,If . and . are sets, the . between . and ., more often known as the . of . in ., is the set . defined by
50#
發(fā)表于 2025-3-30 07:47:46 | 只看該作者
Ordered Pairs,What does it mean to arrange the elements of a set . in some order?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普定县| 临海市| 仲巴县| 邻水| 木兰县| 东兰县| 和顺县| 宕昌县| 洪泽县| 宁阳县| 周口市| 密山市| 怀仁县| 白沙| 昂仁县| 漠河县| 左云县| 迁西县| 孟连| 柳江县| 应城市| 潼南县| 玛曲县| 海城市| 班戈县| 渑池县| 太原市| 株洲县| 苗栗县| 舒城县| 宁明县| 霍州市| 龙川县| 潜江市| 新兴县| 自贡市| 濮阳县| 白朗县| 容城县| 井冈山市| 曲沃县|