找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Naive Set Theory; Paul R. Halmos Book 1974 Springer Science+Business Media New York 1974 addition.arithmetic.Cardinal number.Countable set

[復(fù)制鏈接]
樓主: 母牛膽小鬼
31#
發(fā)表于 2025-3-26 22:43:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:36:46 | 只看該作者
Families,and the notation undergo radical alterations. Suppose, for instance, that . is a function from a set . to a set .. (The very choice of letters indicates that something strange is afoot.) An element of the domain . is called an ., . is called the ., the range of the function is called an ., the funct
33#
發(fā)表于 2025-3-27 05:40:49 | 只看該作者
34#
發(fā)表于 2025-3-27 13:07:40 | 只看該作者
Numbers, all unordered pairs {.}, with . in . in ., and . ≠ .. It seems clear that all the sets in the collection . have a property in common, namely the property of consisting of two elements. It is tempting to try to define “twoness” as the common property of all the sets in the collection ., but the temp
35#
發(fā)表于 2025-3-27 15:44:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:23:45 | 只看該作者
Order,order plays an important role. The basic definitions are simple. The only thing to remember is that the primary motivation comes from the familiar properties of “l(fā)ess than or equal to” and not “l(fā)ess than.” There is no profound reason for this; it just happens that the generalization of “l(fā)ess than or
37#
發(fā)表于 2025-3-28 00:40:02 | 只看該作者
,Zorn’s Lemma,ormulated (or, if need be, reformulated) so that the underlying set is a partially ordered set and the crucial property is maximality. Our next purpose is to state and prove the most important theorem of this kind.
38#
發(fā)表于 2025-3-28 03:58:34 | 只看該作者
Well Ordering,artially ordered set is called . (and its ordering is called a .) if every non-empty subset of it has a smallest element. One consequence of this definition, worth noting even before we look at any examples and counterexamples, is that every well ordered set is totally ordered. Indeed, if . and . ar
39#
發(fā)表于 2025-3-28 07:10:21 | 只看該作者
40#
發(fā)表于 2025-3-28 14:14:21 | 只看該作者
Ordinal Numbers,ntains .. What happens if we start with ., form its successor .., then form the successor of that, and proceed so on ad infinitum? In other words: is there something out beyond ., .., (..)., ?, etc., in the same sense in which . is beyond 0, 1, 2, ?, etc.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青浦区| 黔东| 怀仁县| 隆回县| 乐都县| 忻城县| 新干县| 红安县| 开化县| 凭祥市| 油尖旺区| 河津市| 牡丹江市| 临夏市| 平昌县| 高陵县| 霍林郭勒市| 丰原市| 通海县| 无锡市| 安丘市| 新昌县| 崇阳县| 交口县| 苍南县| 德钦县| 保靖县| 凤台县| 来安县| 任丘市| 时尚| 吉木萨尔县| 新野县| 安多县| 抚顺市| 江孜县| 本溪市| 建宁县| 彰化县| 龙口市| 伊川县|