找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nachbarschaft und Kriminalit?tsfurcht; Eine empirische Unte Jan Starcke Book 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer

[復(fù)制鏈接]
樓主: breath-focus
41#
發(fā)表于 2025-3-28 18:26:50 | 只看該作者
42#
發(fā)表于 2025-3-28 21:02:13 | 只看該作者
Jan Starckeders and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geomet
43#
發(fā)表于 2025-3-29 00:54:29 | 只看該作者
44#
發(fā)表于 2025-3-29 03:51:04 | 只看該作者
Jan Starcke a sequence of Riemannian manifolds, or more generally metric spaces, to converge to a space. In the first section we develop the weakest convergence concept: Gromov-Hausdorff convergence. We then go on to explain some of the elliptic regularity theory we need for some of the later developments. We
45#
發(fā)表于 2025-3-29 09:15:38 | 只看該作者
Jan Starckencluding basic theory of tensors, forms, and Lie groups. At times we shall also assume familiarity with algebraic topology and de Rham cohomology. Specifically, we recommend that the reader is familiar with texts like [14] or[76, vol. 1]. For the readers who have only learned something like the firs
46#
發(fā)表于 2025-3-29 12:15:20 | 只看該作者
Jan Starckeon already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 通州市| 广河县| 来安县| 天水市| 思茅市| 新余市| 新源县| 自贡市| 衡南县| 益阳市| 共和县| 雷州市| 荆州市| 水城县| 马公市| 梅河口市| 富源县| 莲花县| 黔江区| 阿尔山市| 乌兰浩特市| 阳泉市| 漳平市| 瑞丽市| 阳高县| 古田县| 卫辉市| 名山县| 丁青县| 乌苏市| 阿合奇县| 南阳市| 抚州市| 耒阳市| 广汉市| 东城区| 宜兴市| 双城市| 呼图壁县| 隆子县|