找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multiscale Multibody Dynamics; Motion Formalism Imp Jielong Wang Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
查看: 8796|回復: 35
樓主
發(fā)表于 2025-3-21 16:50:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multiscale Multibody Dynamics
副標題Motion Formalism Imp
編輯Jielong Wang
視頻videohttp://file.papertrans.cn/642/641168/641168.mp4
概述Provides the unified Cosserat theory of 3D solid, shell, and beam in motion formalism.Addresses a multiscale modeling technology with FEM implementation for multibody system.Presents the recursive for
圖書封面Titlebook: Multiscale Multibody Dynamics; Motion Formalism Imp Jielong Wang Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This book presents a novel theory of multibody dynamics with distinct features, including unified continuum theory, multiscale modeling technology of multibody system, and motion formalism implementation. All these features together with the introductions of fundamental concepts of vector, dual vector, tensor, dual tensor, recursive descriptions of joints, and the higher-order implicit solvers formulate the scope of the book’s content. In this book, a multibody system is defined as a set consisted of flexible and rigid bodies which are connected by any kinds of joints or constraints to achieve the desired motion. Generally, the motion of multibody system includes the translation and rotation; it is more efficient to describe the motion by using the dual vector or dual tensor directly instead of defining two types of variables, the translation and rotation separately. Furthermore, this book addresses the detail of motion formalism and its finite element implementation of the solid, shell-like, and beam-like structures. It?also introduces the fundamental concepts of mechanics, such as the definition of vector, dual vector, tensor, and dual tensor, briefly. Without following the Eins
出版日期Book 2023
關鍵詞Shell theory; Beam theory; Unified formula; Multiscale modeling; Multibody systems; Screw theory; Motion f
版次1
doihttps://doi.org/10.1007/978-981-19-8441-9
isbn_softcover978-981-19-8443-3
isbn_ebook978-981-19-8441-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Multiscale Multibody Dynamics影響因子(影響力)




書目名稱Multiscale Multibody Dynamics影響因子(影響力)學科排名




書目名稱Multiscale Multibody Dynamics網(wǎng)絡公開度




書目名稱Multiscale Multibody Dynamics網(wǎng)絡公開度學科排名




書目名稱Multiscale Multibody Dynamics被引頻次




書目名稱Multiscale Multibody Dynamics被引頻次學科排名




書目名稱Multiscale Multibody Dynamics年度引用




書目名稱Multiscale Multibody Dynamics年度引用學科排名




書目名稱Multiscale Multibody Dynamics讀者反饋




書目名稱Multiscale Multibody Dynamics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:04:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:36 | 只看該作者
plementation for multibody system.Presents the recursive for.This book presents a novel theory of multibody dynamics with distinct features, including unified continuum theory, multiscale modeling technology of multibody system, and motion formalism implementation. All these features together with t
地板
發(fā)表于 2025-3-22 06:37:29 | 只看該作者
Book 2023 multibody system, and motion formalism implementation. All these features together with the introductions of fundamental concepts of vector, dual vector, tensor, dual tensor, recursive descriptions of joints, and the higher-order implicit solvers formulate the scope of the book’s content. In this b
5#
發(fā)表于 2025-3-22 11:06:37 | 只看該作者
6#
發(fā)表于 2025-3-22 12:56:59 | 只看該作者
7#
發(fā)表于 2025-3-22 19:51:46 | 只看該作者
8#
發(fā)表于 2025-3-23 01:10:40 | 只看該作者
Jielong WangProvides the unified Cosserat theory of 3D solid, shell, and beam in motion formalism.Addresses a multiscale modeling technology with FEM implementation for multibody system.Presents the recursive for
9#
發(fā)表于 2025-3-23 04:47:47 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:11:15 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
玉龙| 酉阳| 弥渡县| 深圳市| 嘉兴市| 休宁县| 项城市| 东乌珠穆沁旗| 攀枝花市| 斗六市| 阿拉善左旗| 玉屏| 商洛市| 金湖县| 长宁区| 汕头市| 蕲春县| 山阳县| 淮滨县| 临澧县| 华安县| 射阳县| 碌曲县| 延津县| 涟源市| 泊头市| 黄陵县| 井冈山市| 枝江市| 汪清县| 安西县| 宜阳县| 台南县| 淮安市| 寻乌县| 定边县| 黔南| 迁西县| 长丰县| 白银市| 讷河市|