找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multiple Integrals; Walter Ledermann Book 1966 Walter Ledermann 1966 Area.Gauss’s Theorem.Green’s Theorem.Stokes’s Theorem.boundary elemen

[復制鏈接]
查看: 44816|回復: 35
樓主
發(fā)表于 2025-3-21 19:37:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multiple Integrals
編輯Walter Ledermann
視頻videohttp://file.papertrans.cn/641/640989/640989.mp4
叢書名稱Library of Mathematics
圖書封面Titlebook: Multiple Integrals;  Walter Ledermann Book 1966 Walter Ledermann 1966 Area.Gauss’s Theorem.Green’s Theorem.Stokes’s Theorem.boundary elemen
描述The aim of this book is to give an elementary treatment of multiple integrals. The notions of integrals extended over a curve, a plane region, a surface and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of this topic would involve deep problems of analysis and topology, which are outside the scope of this volume, and concessions had to be made in respect of completeness without, it is hoped, impairing precision and a reasonable standard of rigour. As in the author‘s Integral Calculus (in this series), the main existence theorems are first explained informally and then stated exactly, but not proved. Topological difficulties are circumvented by imposing some- what stringent, though no unrealistic, restrictions on the regions of integration. Numerous examples are worked out in the text, and each chapter is followed by a set of exercises. My thanks are due to my colleague Dr. S. Swierczkowski, who read the manuscript and made valuable suggestions. w. LEDER
出版日期Book 1966
關鍵詞Area; Gauss’s Theorem; Green’s Theorem; Stokes’s Theorem; boundary element method; curvilinear integral; d
版次1
doihttps://doi.org/10.1007/978-94-011-6091-9
isbn_softcover978-0-7100-4358-0
isbn_ebook978-94-011-6091-9
copyrightWalter Ledermann 1966
The information of publication is updating

書目名稱Multiple Integrals影響因子(影響力)




書目名稱Multiple Integrals影響因子(影響力)學科排名




書目名稱Multiple Integrals網(wǎng)絡公開度




書目名稱Multiple Integrals網(wǎng)絡公開度學科排名




書目名稱Multiple Integrals被引頻次




書目名稱Multiple Integrals被引頻次學科排名




書目名稱Multiple Integrals年度引用




書目名稱Multiple Integrals年度引用學科排名




書目名稱Multiple Integrals讀者反饋




書目名稱Multiple Integrals讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:33:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:44:00 | 只看該作者
Book 1966ce and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of this topic
地板
發(fā)表于 2025-3-22 06:50:12 | 只看該作者
n, a surface and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of t
5#
發(fā)表于 2025-3-22 12:42:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:24:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:23 | 只看該作者
https://doi.org/10.1007/978-94-011-6091-9Area; Gauss’s Theorem; Green’s Theorem; Stokes’s Theorem; boundary element method; curvilinear integral; d
8#
發(fā)表于 2025-3-22 22:25:13 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:09:05 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:05:19 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴仁县| 罗江县| 会同县| 山东| 黔江区| 会东县| 石家庄市| 泽普县| 扶沟县| 文昌市| 彭阳县| 凤山市| 克什克腾旗| 武山县| 平阴县| 比如县| 北安市| 建宁县| 奉化市| 永嘉县| 彭水| 合作市| 贵港市| 定远县| 滨海县| 和政县| 长丰县| 昌吉市| 襄城县| 佛教| 临颍县| 乃东县| 扎鲁特旗| 宣汉县| 江西省| 日照市| 永川市| 涿鹿县| 平潭县| 南昌县| 宁德市|