找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multiple Integrals; Walter Ledermann Book 1966 Walter Ledermann 1966 Area.Gauss’s Theorem.Green’s Theorem.Stokes’s Theorem.boundary elemen

[復(fù)制鏈接]
查看: 44817|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:37:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Multiple Integrals
編輯Walter Ledermann
視頻videohttp://file.papertrans.cn/641/640989/640989.mp4
叢書名稱Library of Mathematics
圖書封面Titlebook: Multiple Integrals;  Walter Ledermann Book 1966 Walter Ledermann 1966 Area.Gauss’s Theorem.Green’s Theorem.Stokes’s Theorem.boundary elemen
描述The aim of this book is to give an elementary treatment of multiple integrals. The notions of integrals extended over a curve, a plane region, a surface and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of this topic would involve deep problems of analysis and topology, which are outside the scope of this volume, and concessions had to be made in respect of completeness without, it is hoped, impairing precision and a reasonable standard of rigour. As in the author‘s Integral Calculus (in this series), the main existence theorems are first explained informally and then stated exactly, but not proved. Topological difficulties are circumvented by imposing some- what stringent, though no unrealistic, restrictions on the regions of integration. Numerous examples are worked out in the text, and each chapter is followed by a set of exercises. My thanks are due to my colleague Dr. S. Swierczkowski, who read the manuscript and made valuable suggestions. w. LEDER
出版日期Book 1966
關(guān)鍵詞Area; Gauss’s Theorem; Green’s Theorem; Stokes’s Theorem; boundary element method; curvilinear integral; d
版次1
doihttps://doi.org/10.1007/978-94-011-6091-9
isbn_softcover978-0-7100-4358-0
isbn_ebook978-94-011-6091-9
copyrightWalter Ledermann 1966
The information of publication is updating

書目名稱Multiple Integrals影響因子(影響力)




書目名稱Multiple Integrals影響因子(影響力)學(xué)科排名




書目名稱Multiple Integrals網(wǎng)絡(luò)公開度




書目名稱Multiple Integrals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multiple Integrals被引頻次




書目名稱Multiple Integrals被引頻次學(xué)科排名




書目名稱Multiple Integrals年度引用




書目名稱Multiple Integrals年度引用學(xué)科排名




書目名稱Multiple Integrals讀者反饋




書目名稱Multiple Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:33:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:44:00 | 只看該作者
Book 1966ce and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of this topic
地板
發(fā)表于 2025-3-22 06:50:12 | 只看該作者
n, a surface and a solid are introduced in tum, and methods for evaluating these integrals are presented in detail. Especial reference is made to the results required in Physics and other mathematical sciences, in which multiple integrals are an indispensable tool. A full theoretical discussion of t
5#
發(fā)表于 2025-3-22 12:42:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:24:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:23 | 只看該作者
https://doi.org/10.1007/978-94-011-6091-9Area; Gauss’s Theorem; Green’s Theorem; Stokes’s Theorem; boundary element method; curvilinear integral; d
8#
發(fā)表于 2025-3-22 22:25:13 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:09:05 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:05:19 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 23:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威信县| 南皮县| 彰化县| 伊金霍洛旗| 齐齐哈尔市| 安多县| 乐清市| 张北县| 德惠市| 北安市| 龙口市| 吉水县| 贵州省| 天门市| 天峨县| 宝丰县| 绥中县| 积石山| 花垣县| 福州市| 福海县| 大邑县| 江西省| 朔州市| 洪雅县| 晋江市| 广宗县| 临高县| 西盟| 漳平市| 灵武市| 岱山县| 眉山市| 西和县| 凉城县| 泗洪县| 河南省| 韶山市| 万盛区| 渝中区| 宜章县|