找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multi-faceted Deep Learning; Models and Data Jenny Benois-Pineau,Akka Zemmari Book 2021 Springer Nature Switzerland AG 2021 Artificial Inte

[復(fù)制鏈接]
查看: 29809|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:35:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Multi-faceted Deep Learning
副標(biāo)題Models and Data
編輯Jenny Benois-Pineau,Akka Zemmari
視頻videohttp://file.papertrans.cn/641/640073/640073.mp4
概述Presents high priority problems in the field of Deep Learning, Multimedia, Visual Data Representation, Interpretation and Coding.Covers low supervision and metric learning.Discusses cross-media and cr
圖書封面Titlebook: Multi-faceted Deep Learning; Models and Data Jenny Benois-Pineau,Akka Zemmari Book 2021 Springer Nature Switzerland AG 2021 Artificial Inte
描述.This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.?The fundamentals of? the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers? a comprehensive preamble for further? problem–oriented chapters.?.The most interesting and open problems of machine learning in the framework of? Deep Learning are discussed in this book and solutions are proposed.? This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks.? This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.?.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Visio
出版日期Book 2021
關(guān)鍵詞Artificial Intelligence; Deep Learning; Deep Neural Networks; low supervision; explainability of Deep l
版次1
doihttps://doi.org/10.1007/978-3-030-74478-6
isbn_softcover978-3-030-74480-9
isbn_ebook978-3-030-74478-6
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Multi-faceted Deep Learning影響因子(影響力)




書目名稱Multi-faceted Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Multi-faceted Deep Learning網(wǎng)絡(luò)公開度




書目名稱Multi-faceted Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multi-faceted Deep Learning被引頻次




書目名稱Multi-faceted Deep Learning被引頻次學(xué)科排名




書目名稱Multi-faceted Deep Learning年度引用




書目名稱Multi-faceted Deep Learning年度引用學(xué)科排名




書目名稱Multi-faceted Deep Learning讀者反饋




書目名稱Multi-faceted Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:05 | 只看該作者
Book 2021on with a low inter-class variability is a difficult problem for any classification tasks.? This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.?.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Visio
板凳
發(fā)表于 2025-3-22 01:52:42 | 只看該作者
http://image.papertrans.cn/n/image/640073.jpg
地板
發(fā)表于 2025-3-22 07:04:19 | 只看該作者
https://doi.org/10.1007/978-3-030-74478-6Artificial Intelligence; Deep Learning; Deep Neural Networks; low supervision; explainability of Deep l
5#
發(fā)表于 2025-3-22 10:44:23 | 只看該作者
978-3-030-74480-9Springer Nature Switzerland AG 2021
6#
發(fā)表于 2025-3-22 15:02:41 | 只看該作者
Jenny Benois-Pineau,Akka ZemmariPresents high priority problems in the field of Deep Learning, Multimedia, Visual Data Representation, Interpretation and Coding.Covers low supervision and metric learning.Discusses cross-media and cr
7#
發(fā)表于 2025-3-22 17:06:48 | 只看該作者
supervision and metric learning.Discusses cross-media and cr.This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.?The fundamentals of? the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first su
8#
發(fā)表于 2025-3-22 22:10:32 | 只看該作者
Book 2021the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers? a comprehensive preamble for further? problem–oriented chapters.?.The most interesting and open problems of machine learning in the framework of? Deep Learning are discussed
9#
發(fā)表于 2025-3-23 04:34:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:34:16 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺昌县| 察哈| 潼南县| 吴堡县| 沅江市| 股票| 东至县| 习水县| 张北县| 来安县| 青岛市| 永丰县| 海阳市| 闽清县| 新巴尔虎右旗| 抚松县| 儋州市| 大足县| 舞阳县| 兴国县| 临漳县| 易门县| 平邑县| 东丰县| 清涧县| 翁源县| 胶州市| 金昌市| 南昌市| 黄大仙区| 东方市| 岫岩| 彭水| 信丰县| 新丰县| 康定县| 牙克石市| 昌乐县| 长丰县| 昌乐县| 沾化县|