找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Multi-faceted Deep Learning; Models and Data Jenny Benois-Pineau,Akka Zemmari Book 2021 Springer Nature Switzerland AG 2021 Artificial Inte

[復(fù)制鏈接]
查看: 29812|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:35:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Multi-faceted Deep Learning
副標(biāo)題Models and Data
編輯Jenny Benois-Pineau,Akka Zemmari
視頻videohttp://file.papertrans.cn/641/640073/640073.mp4
概述Presents high priority problems in the field of Deep Learning, Multimedia, Visual Data Representation, Interpretation and Coding.Covers low supervision and metric learning.Discusses cross-media and cr
圖書(shū)封面Titlebook: Multi-faceted Deep Learning; Models and Data Jenny Benois-Pineau,Akka Zemmari Book 2021 Springer Nature Switzerland AG 2021 Artificial Inte
描述.This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.?The fundamentals of? the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers? a comprehensive preamble for further? problem–oriented chapters.?.The most interesting and open problems of machine learning in the framework of? Deep Learning are discussed in this book and solutions are proposed.? This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks.? This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.?.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Visio
出版日期Book 2021
關(guān)鍵詞Artificial Intelligence; Deep Learning; Deep Neural Networks; low supervision; explainability of Deep l
版次1
doihttps://doi.org/10.1007/978-3-030-74478-6
isbn_softcover978-3-030-74480-9
isbn_ebook978-3-030-74478-6
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱Multi-faceted Deep Learning影響因子(影響力)




書(shū)目名稱Multi-faceted Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Multi-faceted Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Multi-faceted Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Multi-faceted Deep Learning被引頻次




書(shū)目名稱Multi-faceted Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Multi-faceted Deep Learning年度引用




書(shū)目名稱Multi-faceted Deep Learning年度引用學(xué)科排名




書(shū)目名稱Multi-faceted Deep Learning讀者反饋




書(shū)目名稱Multi-faceted Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:05 | 只看該作者
Book 2021on with a low inter-class variability is a difficult problem for any classification tasks.? This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.?.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Visio
板凳
發(fā)表于 2025-3-22 01:52:42 | 只看該作者
http://image.papertrans.cn/n/image/640073.jpg
地板
發(fā)表于 2025-3-22 07:04:19 | 只看該作者
https://doi.org/10.1007/978-3-030-74478-6Artificial Intelligence; Deep Learning; Deep Neural Networks; low supervision; explainability of Deep l
5#
發(fā)表于 2025-3-22 10:44:23 | 只看該作者
978-3-030-74480-9Springer Nature Switzerland AG 2021
6#
發(fā)表于 2025-3-22 15:02:41 | 只看該作者
Jenny Benois-Pineau,Akka ZemmariPresents high priority problems in the field of Deep Learning, Multimedia, Visual Data Representation, Interpretation and Coding.Covers low supervision and metric learning.Discusses cross-media and cr
7#
發(fā)表于 2025-3-22 17:06:48 | 只看該作者
supervision and metric learning.Discusses cross-media and cr.This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.?The fundamentals of? the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first su
8#
發(fā)表于 2025-3-22 22:10:32 | 只看該作者
Book 2021the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers? a comprehensive preamble for further? problem–oriented chapters.?.The most interesting and open problems of machine learning in the framework of? Deep Learning are discussed
9#
發(fā)表于 2025-3-23 04:34:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:34:16 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 呈贡县| 宁夏| 邵阳市| 宾阳县| 丰台区| 休宁县| 克什克腾旗| 枣庄市| 和林格尔县| 象山县| 甘肃省| 安顺市| 巴马| 运城市| 永和县| 锦州市| 化德县| 临沧市| 莲花县| 永嘉县| 黄平县| 福清市| 林甸县| 灵石县| 遂川县| 苍梧县| 阿鲁科尔沁旗| 巴青县| 四平市| 福鼎市| 根河市| 偃师市| 华池县| 海原县| 偃师市| 南城县| 台山市| 色达县| 岫岩| 泗洪县|