找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Monte Carlo Methods in Bayesian Computation; Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor

[復制鏈接]
查看: 32580|回復: 35
樓主
發(fā)表于 2025-3-21 18:46:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Monte Carlo Methods in Bayesian Computation
編輯Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim
視頻videohttp://file.papertrans.cn/640/639102/639102.mp4
概述Includes supplementary material:
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Monte Carlo Methods in Bayesian Computation;  Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor
描述Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent
出版日期Book 2000
關鍵詞Bayesian Computation; Estimator; Likelihood; Logistic Regression; Markov Chain; Monte Carlo Methods; Time
版次1
doihttps://doi.org/10.1007/978-1-4612-1276-8
isbn_softcover978-1-4612-7074-4
isbn_ebook978-1-4612-1276-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Monte Carlo Methods in Bayesian Computation影響因子(影響力)




書目名稱Monte Carlo Methods in Bayesian Computation影響因子(影響力)學科排名




書目名稱Monte Carlo Methods in Bayesian Computation網(wǎng)絡公開度




書目名稱Monte Carlo Methods in Bayesian Computation網(wǎng)絡公開度學科排名




書目名稱Monte Carlo Methods in Bayesian Computation被引頻次




書目名稱Monte Carlo Methods in Bayesian Computation被引頻次學科排名




書目名稱Monte Carlo Methods in Bayesian Computation年度引用




書目名稱Monte Carlo Methods in Bayesian Computation年度引用學科排名




書目名稱Monte Carlo Methods in Bayesian Computation讀者反饋




書目名稱Monte Carlo Methods in Bayesian Computation讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:43:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:40:01 | 只看該作者
Ming-Hui Chen,Qi-Man Shao,Joseph G. IbrahimIncludes supplementary material:
地板
發(fā)表于 2025-3-22 06:09:47 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:46 | 只看該作者
6#
發(fā)表于 2025-3-22 15:11:57 | 只看該作者
978-1-4612-7074-4Springer Science+Business Media New York 2000
7#
發(fā)表于 2025-3-22 17:37:35 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:49 | 只看該作者
0172-7397 n Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques
10#
發(fā)表于 2025-3-23 07:01:22 | 只看該作者
Zusammenfassungschiedlich ausgestaltet. Unterschiede konnten sowohl bei den gesetzlichen Zwangsvorsorgema?nahmen als auch bei betrieblichen Vorsorgema?nahmen festgestellt werden. Einzig die private Altersvorsorge scheint bei allen betrachteten Typen von Erwerbst?tigen gleich ausgestaltet.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
塔河县| 黎城县| 石景山区| 同江市| 施甸县| 岳西县| 三亚市| 怀安县| 克什克腾旗| 天长市| 丹东市| 翁牛特旗| 招远市| 崇义县| 佳木斯市| 温宿县| 嘉峪关市| 百色市| 伊金霍洛旗| 满洲里市| 延长县| 平舆县| 峨边| 冕宁县| 七台河市| 红原县| 崇礼县| 石狮市| 越西县| 长治市| 祁阳县| 阳高县| 河源市| 定日县| 东丽区| 麦盖提县| 汤原县| 南昌市| 清远市| 从化市| 孝昌县|