找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Monte Carlo Methods in Bayesian Computation; Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor

[復(fù)制鏈接]
查看: 32578|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:46:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation
編輯Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim
視頻videohttp://file.papertrans.cn/640/639102/639102.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Springer Series in Statistics
圖書(shū)封面Titlebook: Monte Carlo Methods in Bayesian Computation;  Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor
描述Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent
出版日期Book 2000
關(guān)鍵詞Bayesian Computation; Estimator; Likelihood; Logistic Regression; Markov Chain; Monte Carlo Methods; Time
版次1
doihttps://doi.org/10.1007/978-1-4612-1276-8
isbn_softcover978-1-4612-7074-4
isbn_ebook978-1-4612-1276-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation影響因子(影響力)




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation被引頻次




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation年度引用




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation年度引用學(xué)科排名




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation讀者反饋




書(shū)目名稱(chēng)Monte Carlo Methods in Bayesian Computation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:40:01 | 只看該作者
Ming-Hui Chen,Qi-Man Shao,Joseph G. IbrahimIncludes supplementary material:
地板
發(fā)表于 2025-3-22 06:09:47 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:46 | 只看該作者
6#
發(fā)表于 2025-3-22 15:11:57 | 只看該作者
978-1-4612-7074-4Springer Science+Business Media New York 2000
7#
發(fā)表于 2025-3-22 17:37:35 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:49 | 只看該作者
0172-7397 n Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques
10#
發(fā)表于 2025-3-23 07:01:22 | 只看該作者
Zusammenfassungschiedlich ausgestaltet. Unterschiede konnten sowohl bei den gesetzlichen Zwangsvorsorgema?nahmen als auch bei betrieblichen Vorsorgema?nahmen festgestellt werden. Einzig die private Altersvorsorge scheint bei allen betrachteten Typen von Erwerbst?tigen gleich ausgestaltet.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
美姑县| 剑川县| 湘潭市| 平乐县| 犍为县| 万全县| 门头沟区| 林甸县| 阿荣旗| 梅河口市| 平武县| 宣汉县| 原阳县| 专栏| 任丘市| 盐源县| 栾川县| 邮箱| 修文县| 沂水县| 山阴县| 拜城县| 出国| 舞阳县| 大同县| 灵宝市| 镇坪县| 乳山市| 克山县| 越西县| 潞西市| 师宗县| 平和县| 曲靖市| 黄大仙区| 全州县| 商丘市| 崇义县| 横峰县| 江西省| 湖南省|