找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Monomialization of Morphisms from 3-Folds to Surfaces; Steven Dale Cutkosky Book 2002 Springer-Verlag Berlin Heidelberg 2002 Algebraic Var

[復(fù)制鏈接]
查看: 10031|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:04:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Monomialization of Morphisms from 3-Folds to Surfaces
編輯Steven Dale Cutkosky
視頻videohttp://file.papertrans.cn/640/639032/639032.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Monomialization of Morphisms from 3-Folds to Surfaces;  Steven Dale Cutkosky Book 2002 Springer-Verlag Berlin Heidelberg 2002 Algebraic Var
描述A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e‘tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S..The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
出版日期Book 2002
關(guān)鍵詞Algebraic Variety; Monomialization; Morphism; Resolution of Singularities; algebra; algebraic varieties
版次1
doihttps://doi.org/10.1007/b83848
isbn_softcover978-3-540-43780-2
isbn_ebook978-3-540-48030-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書目名稱Monomialization of Morphisms from 3-Folds to Surfaces影響因子(影響力)




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces影響因子(影響力)學(xué)科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces網(wǎng)絡(luò)公開度




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces被引頻次




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces被引頻次學(xué)科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces年度引用




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces年度引用學(xué)科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces讀者反饋




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:07 | 只看該作者
Book 2002ial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S..The construction is very explicit and uses techniques from resolution of singularities. A research mon
板凳
發(fā)表于 2025-3-22 03:19:12 | 只看該作者
地板
發(fā)表于 2025-3-22 05:36:07 | 只看該作者
Book 2002blowups of nonsingular subvarieties of X and S..The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
5#
發(fā)表于 2025-3-22 10:45:31 | 只看該作者
Monomialization of Morphisms from 3-Folds to Surfaces
6#
發(fā)表于 2025-3-22 16:02:58 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:13:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:19:03 | 只看該作者
https://doi.org/10.1007/b83848Algebraic Variety; Monomialization; Morphism; Resolution of Singularities; algebra; algebraic varieties
10#
發(fā)表于 2025-3-23 06:03:11 | 只看該作者
Steven Dale CutkoskyIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲阳县| 巩留县| 万荣县| 宁蒗| 信丰县| 弥勒县| 顺昌县| 桐乡市| 五原县| 河间市| 四平市| 基隆市| 汾阳市| 类乌齐县| 迭部县| 岱山县| 晋城| 河西区| 湘西| 琼海市| 青冈县| 明星| 阳新县| 溧水县| 阿鲁科尔沁旗| 潼关县| 从化市| 盖州市| 文昌市| 萨迦县| 徐汇区| 内江市| 葫芦岛市| 阿图什市| 扶绥县| 河东区| 文水县| 通化县| 乐清市| 无为县| 江陵县|