找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Monomialization of Morphisms from 3-Folds to Surfaces; Steven Dale Cutkosky Book 2002 Springer-Verlag Berlin Heidelberg 2002 Algebraic Var

[復制鏈接]
查看: 10034|回復: 35
樓主
發(fā)表于 2025-3-21 19:04:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Monomialization of Morphisms from 3-Folds to Surfaces
編輯Steven Dale Cutkosky
視頻videohttp://file.papertrans.cn/640/639032/639032.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Monomialization of Morphisms from 3-Folds to Surfaces;  Steven Dale Cutkosky Book 2002 Springer-Verlag Berlin Heidelberg 2002 Algebraic Var
描述A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e‘tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S..The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
出版日期Book 2002
關鍵詞Algebraic Variety; Monomialization; Morphism; Resolution of Singularities; algebra; algebraic varieties
版次1
doihttps://doi.org/10.1007/b83848
isbn_softcover978-3-540-43780-2
isbn_ebook978-3-540-48030-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書目名稱Monomialization of Morphisms from 3-Folds to Surfaces影響因子(影響力)




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces影響因子(影響力)學科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces網(wǎng)絡公開度




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces網(wǎng)絡公開度學科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces被引頻次




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces被引頻次學科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces年度引用




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces年度引用學科排名




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces讀者反饋




書目名稱Monomialization of Morphisms from 3-Folds to Surfaces讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:36:07 | 只看該作者
Book 2002ial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S..The construction is very explicit and uses techniques from resolution of singularities. A research mon
板凳
發(fā)表于 2025-3-22 03:19:12 | 只看該作者
地板
發(fā)表于 2025-3-22 05:36:07 | 只看該作者
Book 2002blowups of nonsingular subvarieties of X and S..The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
5#
發(fā)表于 2025-3-22 10:45:31 | 只看該作者
Monomialization of Morphisms from 3-Folds to Surfaces
6#
發(fā)表于 2025-3-22 16:02:58 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:13:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:19:03 | 只看該作者
https://doi.org/10.1007/b83848Algebraic Variety; Monomialization; Morphism; Resolution of Singularities; algebra; algebraic varieties
10#
發(fā)表于 2025-3-23 06:03:11 | 只看該作者
Steven Dale CutkoskyIncludes supplementary material:
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿尔山市| 黑山县| 宜昌市| 林西县| 永德县| 镇平县| 紫金县| 岗巴县| 息烽县| 清新县| 芦山县| 灵川县| 兰州市| 博罗县| 南城县| 满洲里市| 威海市| 阿拉善盟| 雅江县| 碌曲县| 辛集市| 昭平县| 津南区| 新民市| 独山县| 乌鲁木齐县| 广昌县| 思南县| 门源| 平阴县| 遵义县| 攀枝花市| 大荔县| 中宁县| 临猗县| 珲春市| 屏南县| 永川市| 沙洋县| 永兴县| 乐陵市|