找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa

[復(fù)制鏈接]
查看: 43638|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:24:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning
副標(biāo)題From an Information
編輯Shinto Eguchi,Osamu Komori
視頻videohttp://file.papertrans.cn/635/634627/634627.mp4
概述Provides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
圖書(shū)封面Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information  Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa
描述.This book explores minimum divergence methods of statistical machine learning for estimation, ?regression, prediction, and so forth, ?in which we engage in information geometry to elucidate their intrinsic properties of the corresponding loss functions, learning algorithms, and statistical models.?One of the most elementary ?examples is Gauss‘s least squares estimator in a linear regression model, in which the estimator is given by minimization of the sum of squares between a response vector and a vector of the linear subspace hulled by explanatory vectors.? This is extended to Fisher‘s maximum likelihood estimator (MLE) for an exponential model, in which the estimator is provided by minimization of the Kullback-Leibler (KL) divergence between a data distribution and a parametric distribution of the exponential model in an empirical analogue. Thus, we envisage a geometric interpretation of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
出版日期Book 2022
關(guān)鍵詞Boosting; Independent Component Analysis; Information Geometry; Kernel Method; Machine Learning
版次1
doihttps://doi.org/10.1007/978-4-431-56922-0
isbn_ebook978-4-431-56922-0
copyrightSpringer Japan KK, part of Springer Nature 2022
The information of publication is updating

書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning被引頻次




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning被引頻次學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning年度引用




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning年度引用學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning讀者反饋




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:39 | 只看該作者
Minimum Divergence Methods in Statistical Machine LearningFrom an Information
板凳
發(fā)表于 2025-3-22 02:27:58 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:06 | 只看該作者
Book 2022 of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
5#
發(fā)表于 2025-3-22 11:28:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:14:41 | 只看該作者
Springer Japan KK, part of Springer Nature 2022
8#
發(fā)表于 2025-3-22 22:15:12 | 只看該作者
http://image.papertrans.cn/m/image/634627.jpg
9#
發(fā)表于 2025-3-23 03:00:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:00 | 只看該作者
Shinto Eguchi,Osamu KomoriProvides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
师宗县| 若羌县| 营口市| 惠东县| 额尔古纳市| 安陆市| 长宁区| 罗甸县| 巩留县| 武山县| 新平| 苗栗市| 额济纳旗| 灌南县| 和静县| 巫溪县| 德惠市| 翼城县| 湘潭市| 奉贤区| 谢通门县| 井冈山市| 巴里| 珠海市| 陆河县| 东港市| 曲水县| 乳山市| 灵武市| 沛县| 江门市| 华坪县| 葵青区| 太和县| 平乐县| 资兴市| 孝昌县| 连城县| 灵宝市| 尖扎县| 循化|