找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa

[復制鏈接]
查看: 43643|回復: 35
樓主
發(fā)表于 2025-3-21 16:24:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Minimum Divergence Methods in Statistical Machine Learning
副標題From an Information
編輯Shinto Eguchi,Osamu Komori
視頻videohttp://file.papertrans.cn/635/634627/634627.mp4
概述Provides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
圖書封面Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information  Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa
描述.This book explores minimum divergence methods of statistical machine learning for estimation, ?regression, prediction, and so forth, ?in which we engage in information geometry to elucidate their intrinsic properties of the corresponding loss functions, learning algorithms, and statistical models.?One of the most elementary ?examples is Gauss‘s least squares estimator in a linear regression model, in which the estimator is given by minimization of the sum of squares between a response vector and a vector of the linear subspace hulled by explanatory vectors.? This is extended to Fisher‘s maximum likelihood estimator (MLE) for an exponential model, in which the estimator is provided by minimization of the Kullback-Leibler (KL) divergence between a data distribution and a parametric distribution of the exponential model in an empirical analogue. Thus, we envisage a geometric interpretation of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
出版日期Book 2022
關鍵詞Boosting; Independent Component Analysis; Information Geometry; Kernel Method; Machine Learning
版次1
doihttps://doi.org/10.1007/978-4-431-56922-0
isbn_ebook978-4-431-56922-0
copyrightSpringer Japan KK, part of Springer Nature 2022
The information of publication is updating

書目名稱Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)




書目名稱Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡公開度




書目名稱Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡公開度學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning被引頻次




書目名稱Minimum Divergence Methods in Statistical Machine Learning被引頻次學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning年度引用




書目名稱Minimum Divergence Methods in Statistical Machine Learning年度引用學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning讀者反饋




書目名稱Minimum Divergence Methods in Statistical Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:36:39 | 只看該作者
Minimum Divergence Methods in Statistical Machine LearningFrom an Information
板凳
發(fā)表于 2025-3-22 02:27:58 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:06 | 只看該作者
Book 2022 of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
5#
發(fā)表于 2025-3-22 11:28:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:14:41 | 只看該作者
Springer Japan KK, part of Springer Nature 2022
8#
發(fā)表于 2025-3-22 22:15:12 | 只看該作者
http://image.papertrans.cn/m/image/634627.jpg
9#
發(fā)表于 2025-3-23 03:00:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:00 | 只看該作者
Shinto Eguchi,Osamu KomoriProvides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
响水县| 香港 | 盐津县| 前郭尔| 通山县| 大安市| 南通市| 德庆县| 鹤峰县| 丰县| 镇坪县| 观塘区| 塘沽区| 丹阳市| 家居| 巴楚县| 夏河县| 长治县| 公主岭市| 清流县| 彭泽县| 台东市| 仁寿县| 炎陵县| 三河市| 沧源| 蓬安县| 泗洪县| 竹山县| 杭州市| 会理县| 壶关县| 博兴县| 正镶白旗| 平谷区| 绍兴县| 蒙阴县| 嵊州市| 阿尔山市| 黑龙江省| 安溪县|