找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Microlocal Methods in Mathematical Physics and Global Analysis; Daniel Grieser,Stefan Teufel,Andras Vasy Conference proceedings 2013 Sprin

[復(fù)制鏈接]
樓主: 和尚吃肉片
11#
發(fā)表于 2025-3-23 09:42:25 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:51 | 只看該作者
Local Smoothing with a Prescribed Loss for the Schr?dinger EquationIn ., the Schr?dinger propagator at time . is unitary on .. spaces. However, solutions to the linear Schr?dinger equation on . are smoother . in time, and . in space:
15#
發(fā)表于 2025-3-24 02:50:35 | 只看該作者
Propagation Through Trapped Sets and Semiclassical Resolvent EstimatesLet .,..We are interested in semiclassical resolvent estimates of the form. for . > 0,. with.,. > 1 ∕ 2. We ask: how is the function .(.) for which (1) holds affected by the relationship between the support of . and the trapped set at energy ., defined by .Here .and ..
16#
發(fā)表于 2025-3-24 07:54:35 | 只看該作者
A Nonlinear Adiabatic Theorem for Coherent StatesWe present a result obtained in collaboration with Rémi Carles on the propagation of coherent states for a 1-d cubic nonlinear Schr?dinger equation in a semi-classical regime (.):
17#
發(fā)表于 2025-3-24 12:37:39 | 只看該作者
The Effective Hamiltonian in Curved Quantum Waveguides and When It Does Not WorkWe are concerned with the singular operator limit for the Dirichlet Laplacian in a three-dimensional curved tube (cf. Fig. 1) when its cross-section shrinks to zero.
18#
發(fā)表于 2025-3-24 17:27:38 | 只看該作者
19#
發(fā)表于 2025-3-24 21:46:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:24:15 | 只看該作者
On the Closure of Elliptic Wedge OperatorsWe present a semi-Fredholm theorem for the minimal extension of an elliptic differential operator on a manifold with wedge singularities and give, under suitable assumptions, a full asymptotic expansion of the trace of the resolvent.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣化县| 玉林市| 信丰县| 资兴市| 陕西省| 石景山区| 北票市| 山阴县| 瓦房店市| 辉南县| 平原县| 怀宁县| 肇源县| 丹东市| 循化| 宣化县| 栖霞市| 大邑县| 宁津县| 剑阁县| 门源| 景宁| 拉萨市| 青神县| 西峡县| 浠水县| 大宁县| 平阴县| 乐至县| 乌兰县| 九江市| 临澧县| 广东省| 霍城县| 凤阳县| 日土县| 南昌县| 柳州市| 白银市| 明水县| 江安县|