找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Microlocal Methods in Mathematical Physics and Global Analysis; Daniel Grieser,Stefan Teufel,Andras Vasy Conference proceedings 2013 Sprin

[復(fù)制鏈接]
查看: 50443|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:29:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Microlocal Methods in Mathematical Physics and Global Analysis
編輯Daniel Grieser,Stefan Teufel,Andras Vasy
視頻videohttp://file.papertrans.cn/634/633305/633305.mp4
概述Overview of current research in microlocal analysis.Extended abstracts allow quick communication of current research without many technicalities, also for non-experts.Pointers to complete papers and b
叢書名稱Trends in Mathematics
圖書封面Titlebook: Microlocal Methods in Mathematical Physics and Global Analysis;  Daniel Grieser,Stefan Teufel,Andras Vasy Conference proceedings 2013 Sprin
描述Microlocal analysis is a field of mathematics that was invented in the mid-20th century for the detailed investigation of problems from partial differential equations, which incorporated and made rigorous many ideas that originated in physics. Since then it has grown to a powerful machine which is used in global analysis, spectral theory, mathematical physics and other fields, and its further development is a lively area of current mathematical research. In this book extended abstracts of the conference ‘Microlocal Methods in Mathematical Physics and Global Analysis‘, which was held at the University of Tübingen? from the?14th to the 18th of June 2011, are collected.? ?
出版日期Conference proceedings 2013
關(guān)鍵詞global analysis; microlocal analysis; semiclassical limit; singular spaces; spectral theory; ordinary dif
版次1
doihttps://doi.org/10.1007/978-3-0348-0466-0
isbn_softcover978-3-0348-0465-3
isbn_ebook978-3-0348-0466-0Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer Basel 2013
The information of publication is updating

書目名稱Microlocal Methods in Mathematical Physics and Global Analysis影響因子(影響力)




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis影響因子(影響力)學(xué)科排名




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis網(wǎng)絡(luò)公開度




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis被引頻次




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis被引頻次學(xué)科排名




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis年度引用




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis年度引用學(xué)科排名




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis讀者反饋




書目名稱Microlocal Methods in Mathematical Physics and Global Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:06 | 只看該作者
2297-0215 ties, also for non-experts.Pointers to complete papers and bMicrolocal analysis is a field of mathematics that was invented in the mid-20th century for the detailed investigation of problems from partial differential equations, which incorporated and made rigorous many ideas that originated in physi
板凳
發(fā)表于 2025-3-22 00:53:23 | 只看該作者
Conference proceedings 2013ential equations, which incorporated and made rigorous many ideas that originated in physics. Since then it has grown to a powerful machine which is used in global analysis, spectral theory, mathematical physics and other fields, and its further development is a lively area of current mathematical r
地板
發(fā)表于 2025-3-22 04:53:02 | 只看該作者
5#
發(fā)表于 2025-3-22 12:00:03 | 只看該作者
6#
發(fā)表于 2025-3-22 14:40:04 | 只看該作者
7#
發(fā)表于 2025-3-22 19:03:51 | 只看該作者
8#
發(fā)表于 2025-3-22 21:58:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:04 | 只看該作者
Microlocal Analysis and Adiabatic Problems: The Case of Perturbed Periodic Schr?dinger Operatorshe specific case of a perturbed periodic Schr?dinger operator, namely the operator defined in a dense subspace of . by . where . is a .-periodic function, ., corresponding to the interaction of the test electron with the ionic cores of a crystal, while . and . represent some perturbing external electromagnetic potentials.
10#
發(fā)表于 2025-3-23 09:37:52 | 只看該作者
Invariant Integral Operators on the Oshima Compactification of a Riemannian Symmetric Space: Kernel mal compact subgroup. Consider further the Oshima compactification . of. [8], which is a simply connected, closed, real-analytic manifold carrying an analytic .-action. The orbital decomposition of . is of normal crossing type, and the open orbits are isomorphic to .∕., the number of them being equal to 2., where . denotes the rank of .∕..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神木县| 富民县| 瑞安市| 唐海县| 五指山市| 太湖县| 冀州市| 民和| 泾川县| 博乐市| 郧西县| 凤凰县| 自治县| 鲜城| 依兰县| 阳泉市| 临安市| 新绛县| 庄浪县| 丰县| 荔波县| 锦屏县| 保德县| 宁乡县| 漳浦县| 曲沃县| 资阳市| 蕲春县| 依安县| 纳雍县| 修武县| 三江| 云梦县| 武隆县| 凉山| 南皮县| 新蔡县| 轮台县| 五原县| 沁源县| 右玉县|