找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Metrical Theory of Continued Fractions; Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 11:20:22 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/m/image/632474.jpg
12#
發(fā)表于 2025-3-23 17:39:56 | 只看該作者
978-90-481-6130-0Springer Science+Business Media B.V. 2002
13#
發(fā)表于 2025-3-23 20:52:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:15 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:37 | 只看該作者
Basic properties of the continued fraction expansion,In this chapter the (regular) continued fraction expansion is introduced and notation fixed. Some basic properties to be used in subsequent chapters are also derived.
16#
發(fā)表于 2025-3-24 10:12:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:15:50 | 只看該作者
Book 2002) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···
19#
發(fā)表于 2025-3-24 20:43:57 | 只看該作者
where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···978-90-481-6130-0978-94-015-9940-5
20#
發(fā)表于 2025-3-25 00:22:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄山市| 英吉沙县| 安国市| 龙海市| 无极县| 海南省| 同仁县| 福贡县| 乐都县| 贵德县| 顺昌县| 嘉禾县| 铁岭市| 太仆寺旗| 于田县| 克拉玛依市| 漠河县| 天峨县| 涟水县| 喀什市| 夏津县| 荃湾区| 昌邑市| 朝阳市| 南皮县| 随州市| 庆城县| 彰武县| 平邑县| 晋中市| 承德市| 洛阳市| 措勤县| 阿合奇县| 察隅县| 永安市| 双峰县| 锦屏县| 富平县| 西安市| 三台县|