找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Metrical Theory of Continued Fractions; Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 11:20:22 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/m/image/632474.jpg
12#
發(fā)表于 2025-3-23 17:39:56 | 只看該作者
978-90-481-6130-0Springer Science+Business Media B.V. 2002
13#
發(fā)表于 2025-3-23 20:52:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:15 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:37 | 只看該作者
Basic properties of the continued fraction expansion,In this chapter the (regular) continued fraction expansion is introduced and notation fixed. Some basic properties to be used in subsequent chapters are also derived.
16#
發(fā)表于 2025-3-24 10:12:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:15:50 | 只看該作者
Book 2002) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···
19#
發(fā)表于 2025-3-24 20:43:57 | 只看該作者
where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···978-90-481-6130-0978-94-015-9940-5
20#
發(fā)表于 2025-3-25 00:22:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林右旗| 宝山区| 鹿泉市| 通化市| 周至县| 永定县| 类乌齐县| 育儿| 健康| 安多县| 大竹县| 筠连县| 南雄市| 滁州市| 永和县| 大兴区| 咸宁市| 巴林右旗| 民勤县| 石河子市| 长顺县| 无锡市| 庄浪县| 襄汾县| 周宁县| 娄底市| 临洮县| 搜索| 靖江市| 南雄市| 重庆市| 西藏| 杨浦区| 鞍山市| 阳谷县| 巩义市| 明光市| 九台市| 丘北县| 光山县| 合川市|