找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metrical Theory of Continued Fractions; Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.

[復(fù)制鏈接]
查看: 26035|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:55:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Metrical Theory of Continued Fractions
編輯Marius Iosifescu,Cor Kraaikamp
視頻videohttp://file.papertrans.cn/633/632474/632474.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Metrical Theory of Continued Fractions;  Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.
描述This monograph is intended to be a complete treatment of the metrical the- ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg- ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, ... }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2··· }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···
出版日期Book 2002
關(guān)鍵詞Ergodic theory; Probability theory; Random variable; Stochastic processes; continued fraction; mixing; num
版次1
doihttps://doi.org/10.1007/978-94-015-9940-5
isbn_softcover978-90-481-6130-0
isbn_ebook978-94-015-9940-5
copyrightSpringer Science+Business Media B.V. 2002
The information of publication is updating

書目名稱Metrical Theory of Continued Fractions影響因子(影響力)




書目名稱Metrical Theory of Continued Fractions影響因子(影響力)學(xué)科排名




書目名稱Metrical Theory of Continued Fractions網(wǎng)絡(luò)公開度




書目名稱Metrical Theory of Continued Fractions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Metrical Theory of Continued Fractions被引頻次




書目名稱Metrical Theory of Continued Fractions被引頻次學(xué)科排名




書目名稱Metrical Theory of Continued Fractions年度引用




書目名稱Metrical Theory of Continued Fractions年度引用學(xué)科排名




書目名稱Metrical Theory of Continued Fractions讀者反饋




書目名稱Metrical Theory of Continued Fractions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:08 | 只看該作者
resentations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the i
板凳
發(fā)表于 2025-3-22 03:26:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:24:39 | 只看該作者
Marius Iosifescu,Cor Kraaikamp an den Bedürfnissen der anwaltlichen Praxis orientiert.Incl.Das Ordnungswidrigkeitenrecht wird als Randfach des Strafrechts in Lehre und Studium immer noch untersch?tzt. Dies steht in krassem Gegensatz zu der hohen Praxisrelevanz, die dieses Rechtsgebiet für Rechtsanw?lte, Richter und Staatsanw?lte
5#
發(fā)表于 2025-3-22 12:17:13 | 只看該作者
Marius Iosifescu,Cor Kraaikamp an den Bedürfnissen der anwaltlichen Praxis orientiert.Incl.Das Ordnungswidrigkeitenrecht wird als Randfach des Strafrechts in Lehre und Studium immer noch untersch?tzt. Dies steht in krassem Gegensatz zu der hohen Praxisrelevanz, die dieses Rechtsgebiet für Rechtsanw?lte, Richter und Staatsanw?lte
6#
發(fā)表于 2025-3-22 13:27:07 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:33 | 只看該作者
8#
發(fā)表于 2025-3-22 22:02:59 | 只看該作者
9#
發(fā)表于 2025-3-23 04:34:34 | 只看該作者
Limit theorems,uotients and associated random variables. The reader should keep in mind throughout that the sequence . of incomplete quotients is ψ-mixing under different probability measures on .. (see Subsections 1.3.6 and 2.3.4), while frequent reference is made to the three appendices at the end of the book.
10#
發(fā)表于 2025-3-23 09:07:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普安县| 靖宇县| 德格县| 南丹县| 常熟市| 华阴市| 清涧县| 邢台县| 汽车| 介休市| 扬中市| 潢川县| 崇州市| 垦利县| 无为县| 洪泽县| 焉耆| 拉孜县| 丹棱县| 望城县| 农安县| 曲阳县| 盐城市| 三河市| 都匀市| 苏尼特右旗| 革吉县| 丽水市| 孝义市| 万宁市| 锡林浩特市| 沙洋县| 南江县| 边坝县| 邵武市| 会同县| 谷城县| 涡阳县| 杭锦后旗| 婺源县| 青田县|