找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metrical Theory of Continued Fractions; Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 11:20:22 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/m/image/632474.jpg
12#
發(fā)表于 2025-3-23 17:39:56 | 只看該作者
978-90-481-6130-0Springer Science+Business Media B.V. 2002
13#
發(fā)表于 2025-3-23 20:52:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:15 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:37 | 只看該作者
Basic properties of the continued fraction expansion,In this chapter the (regular) continued fraction expansion is introduced and notation fixed. Some basic properties to be used in subsequent chapters are also derived.
16#
發(fā)表于 2025-3-24 10:12:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:15:50 | 只看該作者
Book 2002) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···
19#
發(fā)表于 2025-3-24 20:43:57 | 只看該作者
where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···978-90-481-6130-0978-94-015-9940-5
20#
發(fā)表于 2025-3-25 00:22:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦川县| 新昌县| 沽源县| 渭南市| 蒙城县| 黄冈市| 张家界市| 同心县| 奇台县| 启东市| 长汀县| 财经| 渝中区| 平果县| 杨浦区| 库车县| 忻州市| 桂林市| 中超| 甘德县| 安国市| 洞头县| 五指山市| 巴里| 棋牌| 蚌埠市| 通山县| 咸丰县| 罗甸县| 汽车| 招远市| 商河县| 昌乐县| 彰化县| 麻城市| 东平县| 朝阳市| SHOW| 岳西县| 祁连县| 乐业县|