找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metric Learning; Aurélien Bellet,Amaury Habrard,Marc Sebban Book 2015 Springer Nature Switzerland AG 2015

[復(fù)制鏈接]
樓主: Daidzein
21#
發(fā)表于 2025-3-25 04:40:23 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:40 | 只看該作者
Introduction,ining techniques. Prominent examples include nearest-neighbor classification [Cover and Hart, 1967], data clustering [Lloyd, 1982], kernel methods [Sch?lkopf and Smola, 2001] and many information retrieval methods [Manning et al., 2008].
23#
發(fā)表于 2025-3-25 11:44:08 | 只看該作者
Metric Learning for Structured Data,d Perona, 2005, Salton et al., 1975]. In this case, metric learning can simply be performed on the feature vector representation, but this strategy can imply a significant loss of structural information.
24#
發(fā)表于 2025-3-25 18:51:51 | 只看該作者
25#
發(fā)表于 2025-3-25 21:50:45 | 只看該作者
26#
發(fā)表于 2025-3-26 00:19:59 | 只看該作者
Book 2015 appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attr
27#
發(fā)表于 2025-3-26 06:44:46 | 只看該作者
Linear Metric Learning, devoted to learning more flexible linear similarity functions (Section 4.2). Finally, Section 4.3 discusses how to scale-up these methods to large amounts of training data (both in number of samples and number of features).
28#
發(fā)表于 2025-3-26 08:54:37 | 只看該作者
Nonlinear and Local Metric Learning,ce. In this chapter, we present the two main lines of research in nonlinear metric learning: learn a nonlinear form of metric (Section 5.1) or multiple linear metrics (Section 5.2), as illustrated in Figure 5.1.
29#
發(fā)表于 2025-3-26 13:36:41 | 只看該作者
Generalization Guarantees for Metric Learning,on the training sample). This deviation is typically a function of the number of training examples, and some notion of complexity of the model such as the VC dimension [Vapnik and Chervonenkis, 1971], the fat-shattering dimension [Alon et al., 1997] or the Rademacher complexity [Bartlett and Mendelson, 2002, Koltchinskii, 2001].
30#
發(fā)表于 2025-3-26 16:56:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桑植县| 资源县| 江永县| 汾西县| 柯坪县| 镇平县| 平遥县| 永新县| 车致| 江北区| 曲阜市| 宝坻区| 涟水县| 吉水县| 砀山县| 新丰县| 兴宁市| 含山县| 永和县| 南郑县| 百色市| 潮州市| 固安县| 犍为县| 横峰县| 宝坻区| 屏南县| 阿图什市| 宁南县| 娄烦县| 晋江市| 陆良县| 红桥区| 泰宁县| 江北区| 永胜县| 合阳县| 五常市| 闻喜县| 探索| 侯马市|