找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metric Learning; Aurélien Bellet,Amaury Habrard,Marc Sebban Book 2015 Springer Nature Switzerland AG 2015

[復制鏈接]
查看: 12876|回復: 42
樓主
發(fā)表于 2025-3-21 17:59:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Metric Learning
編輯Aurélien Bellet,Amaury Habrard,Marc Sebban
視頻videohttp://file.papertrans.cn/633/632461/632461.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Metric Learning;  Aurélien Bellet,Amaury Habrard,Marc Sebban Book 2015 Springer Nature Switzerland AG 2015
描述Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and r
出版日期Book 2015
版次1
doihttps://doi.org/10.1007/978-3-031-01572-4
isbn_softcover978-3-031-00444-5
isbn_ebook978-3-031-01572-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2015
The information of publication is updating

書目名稱Metric Learning影響因子(影響力)




書目名稱Metric Learning影響因子(影響力)學科排名




書目名稱Metric Learning網(wǎng)絡(luò)公開度




書目名稱Metric Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Metric Learning被引頻次




書目名稱Metric Learning被引頻次學科排名




書目名稱Metric Learning年度引用




書目名稱Metric Learning年度引用學科排名




書目名稱Metric Learning讀者反饋




書目名稱Metric Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:19:56 | 只看該作者
978-3-031-00444-5Springer Nature Switzerland AG 2015
板凳
發(fā)表于 2025-3-22 00:27:00 | 只看該作者
Metric Learning978-3-031-01572-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
地板
發(fā)表于 2025-3-22 05:05:54 | 只看該作者
Metrics,This chapter introduces some background knowledge on metrics and their applications. Section 2.1 provides definitions for distance, similarity and kernel functions. Some standard metrics are presented in Section 2.2. We conclude this chapter by briefly discussing the use of metrics in machine learning and data mining in Section 2.3.
5#
發(fā)表于 2025-3-22 10:11:35 | 只看該作者
6#
發(fā)表于 2025-3-22 14:59:12 | 只看該作者
7#
發(fā)表于 2025-3-22 17:39:36 | 只看該作者
Aurélien Bellet,Amaury Habrard,Marc Sebbaneitung.Includes supplementary material: .Dieses Buch bietet eine grundlegende Einführung in das Rechnungswesen für Kulturbetriebe. Für Kulturinstitutionen wird der Umgang mit dem betrieblichen Rechnungswesen aus mehreren Gründen wichtiger: für eine solide Datenbasis, um staatliche F?rderungen zu erh
8#
發(fā)表于 2025-3-23 00:36:03 | 只看該作者
Introduction,or conceptual representations. Essentially, when facing stimuli or situations similar to what we have encountered before, we expect similar responses and take similar actions. This has led psychologists to develop a variety of cognitive theories and mathematical models of similarity [Ashby and Perri
9#
發(fā)表于 2025-3-23 02:15:20 | 只看該作者
Properties of Metric Learning Algorithms,scalability, optimality guarantees and ability to perform dimensionality reduction (Figure 3.1). When deciding which method to apply, emphasis should be placed on these properties, depending on the characteristics of the problem at hand. They provide the basis for a taxonomy of all the algorithms co
10#
發(fā)表于 2025-3-23 08:50:57 | 只看該作者
Linear Metric Learning,ient learning thanks to their simple form. The chapter is organized as follows. In the first part, we focus on Malahanobis distance learning (Section 4.1), where the learned metric satisfies the distance axioms. Then, motivated by psychological evidence and computational benefits, the second part is
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
珠海市| 甘南县| 青浦区| 阿拉善右旗| 德惠市| 揭东县| 泸西县| 翁牛特旗| 彰武县| 河曲县| 镇原县| 平谷区| 乌拉特前旗| 周口市| 文水县| 安徽省| 永平县| 崇礼县| 瑞金市| 新绛县| 竹山县| 宕昌县| 仪征市| 英德市| 留坝县| 宁国市| 琼海市| 牙克石市| 冕宁县| 龙海市| 宜城市| 陕西省| 克什克腾旗| 偃师市| 广安市| 景东| 伊宁市| 木里| 晋城| 顺义区| 南雄市|