找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015; 18th International C Nassir Navab,Joachim Hornegger,Alejandro F.

[復(fù)制鏈接]
樓主: Bush
41#
發(fā)表于 2025-3-28 18:29:51 | 只看該作者
Statistical Power in Image Segmentation: Relating Sample Size to Reference Standard Quality segmentation algorithms? (2) How accurate should the reference standard be? The resulting formula predicted statistical power to within 2% of Monte Carlo simulations across a range of model parameters. A case study, using the PROMISE12 prostate segmentation data set, shows the practical use of the formula.
42#
發(fā)表于 2025-3-28 22:31:37 | 只看該作者
43#
發(fā)表于 2025-3-29 02:24:00 | 只看該作者
A Latent Source Model for Patch-Based Image Segmentationnd theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.
44#
發(fā)表于 2025-3-29 06:08:45 | 只看該作者
Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentationons in magnetic resonance images. Our model is a neural network that has both convolutional and deconvolutional layers, and combines feature extraction and segmentation prediction in a single model. The joint training of the feature extraction and prediction layers allows the model to automatically
45#
發(fā)表于 2025-3-29 09:13:30 | 只看該作者
Unsupervised Myocardial Segmentation for Cardiac MRIed fully supervised techniques such as Dictionary Learning and Atlas-based techniques. But, the benefits of unsupervised techniques e.g., no need for large amount of training data and better potential of handling variability in anatomy and image contrast, is more evident with emerging cardiac MR mod
46#
發(fā)表于 2025-3-29 12:24:28 | 只看該作者
47#
發(fā)表于 2025-3-29 18:02:22 | 只看該作者
Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribuality due to sparse acquisition, inter-slice motion, and the widely varying position and orientation of the placenta between pregnant women. We propose a minimally interactive online learning-based method named Slic-Seg to obtain accurate placenta segmentations from MRI. An online random forest is
48#
發(fā)表于 2025-3-29 20:01:16 | 只看該作者
49#
發(fā)表于 2025-3-30 03:42:16 | 只看該作者
Multi-Level Parcellation of the Cerebral Cortex Using Resting-State fMRIts at developing parcellation algorithms using resting-state fMRI, there still remain challenges to be overcome, such as generating reproducible parcellations at both single-subject and group levels, while sub-dividing the cortex into functionally homogeneous parcels. To address these challenges, we
50#
發(fā)表于 2025-3-30 06:25:51 | 只看該作者
Interactive Multi-organ Segmentation Based on Multiple Template Deformationof [1] with user-provided hard constraints that can be optimized globally or locally, we propose an efficient and user-friendly solution that ensures consistent feedback to the user interactions. We demonstrate the potential of our approach through a user study with 10 medical imaging experts, aimin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵宝市| 保康县| 安阳市| 靖安县| 柳江县| 惠州市| 衡东县| 湖口县| 仙游县| 永春县| 宜阳县| 镇赉县| 临湘市| 唐河县| 开平市| 乐都县| 堆龙德庆县| 慈利县| 剑河县| 邢台市| 茌平县| 阿勒泰市| 宜昌市| 灌南县| 手机| 四子王旗| 昭平县| 玉田县| 建宁县| 鸡西市| 沅江市| 寿宁县| 漯河市| 阿拉善右旗| 鄯善县| 普洱| 任丘市| 莆田市| 武夷山市| 长乐市| 壤塘县|