找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015; 18th International C Nassir Navab,Joachim Hornegger,Alejandro F.

[復(fù)制鏈接]
樓主: Bush
41#
發(fā)表于 2025-3-28 18:29:51 | 只看該作者
Statistical Power in Image Segmentation: Relating Sample Size to Reference Standard Quality segmentation algorithms? (2) How accurate should the reference standard be? The resulting formula predicted statistical power to within 2% of Monte Carlo simulations across a range of model parameters. A case study, using the PROMISE12 prostate segmentation data set, shows the practical use of the formula.
42#
發(fā)表于 2025-3-28 22:31:37 | 只看該作者
43#
發(fā)表于 2025-3-29 02:24:00 | 只看該作者
A Latent Source Model for Patch-Based Image Segmentationnd theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.
44#
發(fā)表于 2025-3-29 06:08:45 | 只看該作者
Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentationons in magnetic resonance images. Our model is a neural network that has both convolutional and deconvolutional layers, and combines feature extraction and segmentation prediction in a single model. The joint training of the feature extraction and prediction layers allows the model to automatically
45#
發(fā)表于 2025-3-29 09:13:30 | 只看該作者
Unsupervised Myocardial Segmentation for Cardiac MRIed fully supervised techniques such as Dictionary Learning and Atlas-based techniques. But, the benefits of unsupervised techniques e.g., no need for large amount of training data and better potential of handling variability in anatomy and image contrast, is more evident with emerging cardiac MR mod
46#
發(fā)表于 2025-3-29 12:24:28 | 只看該作者
47#
發(fā)表于 2025-3-29 18:02:22 | 只看該作者
Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribuality due to sparse acquisition, inter-slice motion, and the widely varying position and orientation of the placenta between pregnant women. We propose a minimally interactive online learning-based method named Slic-Seg to obtain accurate placenta segmentations from MRI. An online random forest is
48#
發(fā)表于 2025-3-29 20:01:16 | 只看該作者
49#
發(fā)表于 2025-3-30 03:42:16 | 只看該作者
Multi-Level Parcellation of the Cerebral Cortex Using Resting-State fMRIts at developing parcellation algorithms using resting-state fMRI, there still remain challenges to be overcome, such as generating reproducible parcellations at both single-subject and group levels, while sub-dividing the cortex into functionally homogeneous parcels. To address these challenges, we
50#
發(fā)表于 2025-3-30 06:25:51 | 只看該作者
Interactive Multi-organ Segmentation Based on Multiple Template Deformationof [1] with user-provided hard constraints that can be optimized globally or locally, we propose an efficient and user-friendly solution that ensures consistent feedback to the user interactions. We demonstrate the potential of our approach through a user study with 10 medical imaging experts, aimin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五峰| 新乡市| 麻栗坡县| 枞阳县| 汉中市| 罗定市| 葵青区| 萨嘎县| 莱阳市| 锡林郭勒盟| 太仆寺旗| 辽阳县| 政和县| 高邮市| 重庆市| 尚义县| 岢岚县| 额尔古纳市| 乌审旗| 奉贤区| 汽车| 喀什市| 克拉玛依市| 宽甸| 会东县| 柳州市| 仪征市| 林芝县| 江山市| 陇西县| 平和县| 吉木乃县| 达州市| 建水县| 东安县| 光泽县| 张家川| 陕西省| 商洛市| 扶余县| 泽普县|