找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015; 18th International C Nassir Navab,Joachim Hornegger,Alejandro F.

[復(fù)制鏈接]
樓主: Bush
51#
發(fā)表于 2025-3-30 08:46:38 | 只看該作者
Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longiar, neuropsychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), have been linked with abnormal early development of the hippocampus. Despite its known importance, studying the hippocampus in infant subjects is very challenging due to the significantly smaller brain size, dyn
52#
發(fā)表于 2025-3-30 13:01:59 | 只看該作者
53#
發(fā)表于 2025-3-30 20:24:33 | 只看該作者
54#
發(fā)表于 2025-3-30 23:08:08 | 只看該作者
Automatic 3D US Brain Ventricle Segmentation in Pre-Term Neonates Using Multi-phase Geodesic Level-Saging has been used to quantitatively monitor the ventricular volume in IVH neonates, instead of typical 2D US used clinically, which relies on linear measurements from a single slice and visually estimates to determine ventricular dilation. To translate 3D US imaging into clinical setting, an accur
55#
發(fā)表于 2025-3-31 02:10:06 | 只看該作者
Multiple Surface Segmentation Using Truncated Convex Priors fast multiple surface segmentation approach with truncated convex priors for a segmentation problem, in which there exist abrupt surface distance changes between mutually interacting surface pairs. A 3-D graph theoretic framework based on . is employed. The use of truncated convex priors enables to
56#
發(fā)表于 2025-3-31 08:32:03 | 只看該作者
57#
發(fā)表于 2025-3-31 09:24:26 | 只看該作者
58#
發(fā)表于 2025-3-31 15:01:53 | 只看該作者
Corpus Callosum Segmentation in MS Studies Using Normal Atlases and Optimal Hybridization of Extrinsltiple sclerosis (MS). A number of automatic methods have been proposed for CC segmentation in magnetic resonance images (MRIs) that can be broadly classified as intensity-based and template-based. Imaging artifacts and signal changes due to pathology often cause errors in intensity-based methods. T
59#
發(fā)表于 2025-3-31 20:24:59 | 只看該作者
Brain Tissue Segmentation Based on Diffusion MRI Using ?0 Sparse-Group Representation Classificationand facilitates fusion of information between the two imaging modalities. Unlike existing segmentation approaches that are based on diffusion tensor imaging (DTI), our method explicitly models the coexistence of various diffusion compartments within each voxel owing to different tissue types and dif
60#
發(fā)表于 2025-3-31 22:21:59 | 只看該作者
A Latent Source Model for Patch-Based Image Segmentationere has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新绛县| 犍为县| 康保县| 庆元县| 南靖县| 句容市| 通江县| 涡阳县| 皋兰县| 徐闻县| 六枝特区| 东明县| 育儿| 木兰县| 江津市| 辛集市| 启东市| 拉萨市| 左贡县| 科技| 丹东市| 六安市| 丘北县| 民勤县| 南城县| 南丹县| 永寿县| 洛南县| 阿鲁科尔沁旗| 赤峰市| 潜山县| 安乡县| 鹤山市| 赤水市| 永昌县| 神木县| 班戈县| 自贡市| 冷水江市| 清远市| 新密市|