找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011; 14th International C Gabor Fichtinger,Anne Martel,Terry Peters Co

[復制鏈接]
樓主: 兩邊在擴散
41#
發(fā)表于 2025-3-28 15:35:53 | 只看該作者
42#
發(fā)表于 2025-3-28 19:58:22 | 只看該作者
43#
發(fā)表于 2025-3-29 00:14:26 | 只看該作者
Regularized Tensor Factorization for Multi-Modality Medical Image Classification. The major goal is to use all modalities simultaneously to transform very high dimensional image to a lower dimensional representation in a discriminative way. In addition to being discriminative, the proposed approach has the advantage of being clinically interpretable. We propose a framework base
44#
發(fā)表于 2025-3-29 06:34:05 | 只看該作者
45#
發(fā)表于 2025-3-29 10:42:27 | 只看該作者
Aggregated Distance Metric Learning (ADM) for Image Classification in Presence of Limited Training D this approach is effective in the presence of large amounts of training data, classification accuracy will deteriorate when the number of training samples is small, which, unfortunately, is often the situation in several medical applications. We present a novel image classification method called .(
46#
發(fā)表于 2025-3-29 13:22:04 | 只看該作者
47#
發(fā)表于 2025-3-29 17:42:41 | 只看該作者
A Discriminative-Generative Model for Detecting Intravenous Contrast in CT Imagesnreliability of the existing DICOM contrast metadata..The algorithm is based on a hybrid discriminative-generative probabilistic model. A discriminative detector localizes enhancing regions of interest in the scan. Then a generative classifier optimally fuses evidence gathered from those regions int
48#
發(fā)表于 2025-3-29 22:04:44 | 只看該作者
49#
發(fā)表于 2025-3-30 01:09:01 | 只看該作者
An Analysis of Scale and Rotation Invariance in the Bag-of-Features Method for Histopathological Imay the effect of scale and rotation invariance in the bag-of-features framework for Renal Cell Carcinoma subtype classification. We estimated the performance of different features by linear support vector machine over 10 iterations of 3-fold cross validation. For a very heterogeneous dataset labeled
50#
發(fā)表于 2025-3-30 07:02:48 | 只看該作者
Robust Large Scale Prone-Supine Polyp Matching Using Local Features: A Metric Learning Approachpolyps. In this paper, we propose a robust and automatic polyp prone-supine view matching method, to facilitate the regular CTC workflow where radiologists need to manually match the CAD findings in prone and supine CT scans for validation. Apart from previous colon registration approaches based on
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吉首市| 会昌县| 铜川市| 娄底市| 靖安县| 章丘市| 西充县| 钟山县| 明水县| 佳木斯市| 颍上县| 新乡县| 乌兰察布市| 横山县| 华池县| 吐鲁番市| 同仁县| 钟祥市| 宜川县| 睢宁县| 札达县| 大洼县| 竹山县| 南宁市| 毕节市| 福海县| 多伦县| 巩留县| 正镶白旗| 麦盖提县| 屏东县| 大渡口区| 柏乡县| 长汀县| 永州市| 贵阳市| 元阳县| 乌苏市| 同仁县| 山阳县| 雷山县|