找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011; 14th International C Gabor Fichtinger,Anne Martel,Terry Peters Co

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:47:00 | 只看該作者
32#
發(fā)表于 2025-3-27 02:50:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:28:25 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:32 | 只看該作者
Classification of Alzheimer’s Disease Using a Self-Smoothing Operatorroved accuracy for Alzheimer’s Disease over Diffusion Maps [2] and a popular metric learning approach [3]. State-of-the-art results are obtained in the classification of 120 brain MRIs from ADNI as normal, mild cognitive impairment, and Alzheimer’s.
36#
發(fā)表于 2025-3-27 18:04:59 | 只看該作者
Identifying AD-Sensitive and Cognition-Relevant Imaging Biomarkers via Joint Classification and Regr among brain structure, cognition and disease status. Using the imaging and cognition data from Alzheimer’s Disease Neuroimaging Initiative , database, the effectiveness of the proposed method is demonstrated by clearly improved performance on predicting both cognitive scores and disease status.
37#
發(fā)表于 2025-3-27 23:50:10 | 只看該作者
Regularized Tensor Factorization for Multi-Modality Medical Image Classificationted. We have validated our method on a multi-modal longitudinal brain imaging study. We compared this method with a publically available classification software based on SVM that has shown state-of-the-art classification rate in number of publications.
38#
發(fā)表于 2025-3-28 06:05:44 | 只看該作者
Detection, Grading and Classification of Coronary Stenoses in Computed Tomography Angiographystep and a lumen cross-section estimation step using random regression forests. We show state-of-the-art performance of our method in experiments conducted on a set of 229 CCTA volumes. With an average processing time of 1.8 seconds per case after centerline extraction, our method is significantly faster than competing approaches.
39#
發(fā)表于 2025-3-28 07:56:28 | 只看該作者
Automatic Region-of-Interest Segmentation and Pathology Detection in Magnetically Guided Capsule Endlgorithm was tested on 300 images of different patients with uniformly distributed occurrences of the target pathologies. We correctly segmented 84.72% of bubble areas. A mean detection rate of 86% for the target pathologies was achieved during a 5-fold leave-one-out cross-validation.
40#
發(fā)表于 2025-3-28 10:32:29 | 只看該作者
Conference proceedings 2011lly selected 251 revised papers from 819 submissions for presentation in three volumes. The third volume includes 82 papers organized in topical sections on computer-aided diagnosis and machine learning, and segmentation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永靖县| 元江| 贵阳市| 蒲江县| 福贡县| 宁武县| 宁波市| 游戏| 朝阳区| 黄山市| 贞丰县| 榆社县| 顺平县| 西贡区| 离岛区| 扶绥县| 徐闻县| 淄博市| 桑植县| 公安县| 莱阳市| 静乐县| 淮阳县| 临泽县| 常德市| 门头沟区| 安仁县| 青龙| 崇左市| 循化| 东平县| 顺昌县| 镇安县| 贵州省| 台南县| 博客| 阿图什市| 资溪县| 砚山县| 湟中县| 翼城县|