找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017; 20th International C Maxime Descoteaux,Lena Maier-Hein,Simon Duch

[復制鏈接]
51#
發(fā)表于 2025-3-30 08:53:27 | 只看該作者
Deep Multi-task Multi-channel Learning for Joint Classification and Regression of Brain Statusmagnetic resonance imaging (MRI) data, since these two tasks are highly correlated. Although several joint learning models have been developed, most existing methods focus on using human-engineered features extracted from MRI data. Due to the possible heterogeneous property between human-engineered
52#
發(fā)表于 2025-3-30 12:26:04 | 只看該作者
Nonlinear Feature Space Transformation to Improve the Prediction of MCI to AD Conversion to target the disease process early. In this paper, we present a novel nonlinear feature transformation scheme to improve the prediction of MCI-AD conversion through semi-supervised learning. Utilizing Laplacian SVM (LapSVM) as a host classifier, the proposed method learns a smooth spatially varyin
53#
發(fā)表于 2025-3-30 16:38:41 | 只看該作者
54#
發(fā)表于 2025-3-30 22:53:00 | 只看該作者
Latent Processes Governing Neuroanatomical Change in Aging and Dementiamodate neural systems with high susceptibility to deleterious factors. Due to the overlap, the separation between aging and pathological processes is challenging when analyzing brain structures independently. We propose to identify multivariate latent processes that govern cross-sectional and longit
55#
發(fā)表于 2025-3-31 04:18:41 | 只看該作者
A Multi-armed Bandit to Smartly Select a Training Set from Big Medical Datadifferent datasets. Simply including all the data does not only incur high processing costs but can even harm the prediction. We formulate the smart and efficient selection of a training dataset from big medical image data as a multi-armed bandit problem, solved by Thompson sampling. Our method assu
56#
發(fā)表于 2025-3-31 06:42:53 | 只看該作者
57#
發(fā)表于 2025-3-31 12:19:31 | 只看該作者
58#
發(fā)表于 2025-3-31 14:32:23 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:37 | 只看該作者
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Dalow-rank matrix completion (.imputing the missing values and unknown labels simultaneously) and multi-task learning (.defining one regression task for each combination of modalities and then learning them jointly), are unable to model the complex data-to-label relationship in AD diagnosis and also i
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 01:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
日土县| 麻城市| 肇东市| 石门县| 宣威市| 九台市| 呼伦贝尔市| 怀安县| 丹江口市| 延安市| 阿克陶县| 瑞金市| 兰溪市| 偃师市| 衡南县| 外汇| 麻江县| 开远市| 天门市| 高密市| 宜昌市| 楚雄市| 东阳市| 天柱县| 准格尔旗| 晋州市| 邵阳县| 弥渡县| 岢岚县| 芒康县| 赣州市| 商水县| 阳泉市| 合川市| 焉耆| 陈巴尔虎旗| 泰安市| 剑河县| 江油市| 巩留县| 巴林左旗|