找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017; 20th International C Maxime Descoteaux,Lena Maier-Hein,Simon Duch

[復制鏈接]
11#
發(fā)表于 2025-3-23 12:25:18 | 只看該作者
Li Zhang,Dana Cobzas,Alan Wilman,Linglong Kong komplett aktualisierten 6. Auflage:?Schmerz, Geschlecht und Opioidwirkung, Bewertung transdermaler Applikationstechniken, Therapie opioidbedingter Nebenwirkungen, Opioidanwendung bei S?uglingen und alten Mensc978-3-662-09096-1
12#
發(fā)表于 2025-3-23 14:58:26 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:03 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:44 | 只看該作者
Mingliang Wang,Xiaoke Hao,Jiashuang Huang,Kangcheng Wang,Xijia Xu,Daoqiang Zhang
15#
發(fā)表于 2025-3-24 02:53:08 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:34 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:55 | 只看該作者
Deep Multi-task Multi-channel Learning for Joint Classification and Regression of Brain Statuss in a data-driven manner, and then extract multiple image patches around these detected landmarks. A deep multi-task multi-channel convolutional neural network is then developed for joint disease classification and clinical score regression. We train our model on a large multi-center cohort (., ADN
18#
發(fā)表于 2025-3-24 18:17:52 | 只看該作者
Multi-level Multi-task Structured Sparse Learning for Diagnosis of Schizophrenia Disease classifiers. Finally, we adopt an ensemble strategy to combine outputs of all SVM classifiers to achieve the final decision. Our method has been evaluated on 46 subjects, and the superior classification results demonstrate the effectiveness of our proposed method as compared to other methods.
19#
發(fā)表于 2025-3-24 22:39:48 | 只看該作者
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Daeature selection in an unified formulation, thus alleviating the modality heterogeneity issue and making all the samples comparable to share a common classifier in the RKHS. The resulting classifier obviously captures the nonlinear data-to-label relationship. We have tested our method using MRI and
20#
發(fā)表于 2025-3-25 02:35:43 | 只看該作者
GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction experiments have been evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The advantage of proposed model is verified by improved stability of selected lesion features and better classification results.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 01:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永昌县| 涞源县| 淳安县| 宁河县| 余江县| 凤山县| 金川县| 金溪县| 望奎县| 舟山市| 常德市| 驻马店市| 谷城县| 吐鲁番市| 巢湖市| 汝州市| 青铜峡市| 高邑县| 五指山市| 海淀区| 洞头县| 政和县| 湖州市| 洱源县| 平昌县| 和平区| 邵阳市| 丹棱县| 宣威市| 安顺市| 东丰县| 平潭县| 江都市| 比如县| 郧西县| 于田县| 南陵县| 正阳县| 江阴市| 武胜县| 寿阳县|