找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanistic Data Science for STEM Education and Applications; Wing Kam Liu,Zhengtao Gan,Mark Fleming Textbook 2021 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 19112|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:40:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mechanistic Data Science for STEM Education and Applications
編輯Wing Kam Liu,Zhengtao Gan,Mark Fleming
視頻videohttp://file.papertrans.cn/629/628788/628788.mp4
概述Introduces key concepts of Mechanistic Data Science for decision making and problem solving.Demonstrates innovative solutions of engineering problems by combining data science and mechanistic knowledg
圖書封面Titlebook: Mechanistic Data Science for STEM Education and Applications;  Wing Kam Liu,Zhengtao Gan,Mark Fleming Textbook 2021 The Editor(s) (if appli
描述.This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e.,?“mechanistic” principles) to solve intractable problems.? Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5)?deep?learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry leveltextbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as?STEM.?.(Science, Technology, Engineering, Mathematics). .high school students and teachers..
出版日期Textbook 2021
關(guān)鍵詞Data science; machine learning; deep learning; mechanistic modeling; mathematical science and engineerin
版次1
doihttps://doi.org/10.1007/978-3-030-87832-0
isbn_softcover978-3-030-87834-4
isbn_ebook978-3-030-87832-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Mechanistic Data Science for STEM Education and Applications影響因子(影響力)




書目名稱Mechanistic Data Science for STEM Education and Applications影響因子(影響力)學(xué)科排名




書目名稱Mechanistic Data Science for STEM Education and Applications網(wǎng)絡(luò)公開度




書目名稱Mechanistic Data Science for STEM Education and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mechanistic Data Science for STEM Education and Applications被引頻次




書目名稱Mechanistic Data Science for STEM Education and Applications被引頻次學(xué)科排名




書目名稱Mechanistic Data Science for STEM Education and Applications年度引用




書目名稱Mechanistic Data Science for STEM Education and Applications年度引用學(xué)科排名




書目名稱Mechanistic Data Science for STEM Education and Applications讀者反饋




書目名稱Mechanistic Data Science for STEM Education and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:04:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:05:48 | 只看該作者
http://image.papertrans.cn/m/image/628788.jpg
地板
發(fā)表于 2025-3-22 05:27:39 | 只看該作者
https://doi.org/10.1007/978-3-030-87832-0Data science; machine learning; deep learning; mechanistic modeling; mathematical science and engineerin
5#
發(fā)表于 2025-3-22 12:49:01 | 只看該作者
Introduction to Mechanistic Data Science,Data science and machine learning are pushing the limits of the hardware and computer algorithms more and more. Additionally, mathematical science and engineering is constantly taxed with challenging the current status quo. In this perspective, it is paramount to explore the possibility to perform t
6#
發(fā)表于 2025-3-22 13:54:00 | 只看該作者
Multimodal Data Generation and Collection, This process is a key part of the scientific process and generally involves observation and careful recording. Costly data collection from physical observation can be enhanced by taking advantage of the modern computer hardware and software to simulate the physical experiments and generate further
7#
發(fā)表于 2025-3-22 17:19:34 | 只看該作者
Optimization and Regression, and engineering, linear regression is fundamental to understanding more advanced regression methods. In particular, gradient descent will be discussed as a technique with a wide range of applications. Key to understanding linear regression are concepts of optimization. In this chapter, the fundamen
8#
發(fā)表于 2025-3-23 01:09:51 | 只看該作者
Extraction of Mechanistic Features,red, disorganized and jumbled formats. It is necessary process and re-organize data to make it possible to achieve useful outcomes using data science. In addition, it can be important to understand the scientific principles associated with data to enhance the feature extraction process. This chapter
9#
發(fā)表于 2025-3-23 03:27:25 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:41 | 只看該作者
Deep Learning for Regression and Classification,eural networks (ANN)) (Schmidhuber, Neural Networks, 61, 85–117, 2015). An ANN is a computer system inspired by the biological neural networks in the human brain (Chen et al., Sensors, 19, 2047, 2019). The term “deep” refers to the use of multiple layers of neurons (three or more) in the ANN. Deep l
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西城区| 云林县| 吉首市| 京山县| 广东省| 策勒县| 青神县| 沛县| 临汾市| 剑阁县| 灵寿县| 丽江市| 依安县| 罗定市| 磴口县| 万年县| 平原县| 揭东县| 彭州市| 思茅市| 正安县| 隆子县| 仪陇县| 合肥市| 武城县| 句容市| 尚志市| 新巴尔虎左旗| 神池县| 明光市| 临汾市| 永川市| 德保县| 青州市| 武汉市| 泽库县| 广宁县| 托里县| 横峰县| 湟中县| 铜川市|