找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanistic Data Science for STEM Education and Applications; Wing Kam Liu,Zhengtao Gan,Mark Fleming Textbook 2021 The Editor(s) (if appli

[復制鏈接]
樓主: BOUT
11#
發(fā)表于 2025-3-23 11:18:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:10:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:22:49 | 只看該作者
arbage collection feasible in many situations, including real time applications or within traditional programming languages. However optimal performance cannot always be achieved by a uniform general purpose solution. Sometimes an algorithm exhibits a predictable pattern of memory usage that could b
14#
發(fā)表于 2025-3-24 01:33:13 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:45 | 只看該作者
problems by combining data science and mechanistic knowledg.This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e.,?“mechanistic” principles) to solve intractable problems.? Traditional data scie
16#
發(fā)表于 2025-3-24 08:27:17 | 只看該作者
Multimodal Data Generation and Collection,making aspects. This chapter shows data collection and generation from different sources and how they can be managed efficiently. Feature-based diamond pricing and material property testing by indentation are used to demonstrate key ideas.
17#
發(fā)表于 2025-3-24 11:01:29 | 只看該作者
Optimization and Regression, some nonlinear relationships will also be discussed, including piecewise linear regression, and moving least squares. The ease and strength of linear regression will be demonstrated through example problems in baseball and material hardness.
18#
發(fā)表于 2025-3-24 18:21:33 | 只看該作者
Textbook 2021les (i.e.,?“mechanistic” principles) to solve intractable problems.? Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here
19#
發(fā)表于 2025-3-24 19:01:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:09 | 只看該作者
engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as?STEM.?.(Science, Technology, Engineering, Mathematics). .high school students and teachers..978-3-030-87834-4978-3-030-87832-0
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 17:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
六安市| 贞丰县| 青冈县| 海晏县| 霍州市| 竹山县| 炉霍县| 虹口区| 陇川县| 闽侯县| 清新县| 修文县| 马尔康县| 桦南县| 郸城县| 延津县| 阿拉善右旗| 新邵县| 阜平县| 甘德县| 万盛区| 鸡东县| 新巴尔虎左旗| 永和县| 怀远县| 肇源县| 广河县| 郎溪县| 黔西县| 招远市| 平凉市| 吉首市| 榆中县| 林口县| 垦利县| 梅州市| 元谋县| 瑞昌市| 江油市| 武功县| 彭阳县|