找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mean Curvature Flow and Isoperimetric Inequalities; Manuel Ritoré,Carlo Sinestrari Textbook 2010 Birkh?user Basel 2010 Mean curvature.Mini

[復(fù)制鏈接]
樓主: 和尚吃肉片
11#
發(fā)表于 2025-3-23 10:51:16 | 只看該作者
Singular behaviour of convex surfacesIn the next two sections we shall see some results showing that, roughly speaking, the convexity properties of a surface evolving by mean curvature flow improve when a singularity is formed. We begin with the case of convex surfaces.
12#
發(fā)表于 2025-3-23 17:15:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:11 | 只看該作者
Mean curvature flow with surgeriesIn this section we describe the mean curvature flow with surgeries which has been defined in [48] for two-convex surfaces of dimension . ≥ 3. Such a construction is inspired by the one which was introduced by Hamilton [37] for the Ricci flow and which enabled Perelman [56] to prove the geometrization conjecture for three-dimensional manifolds.
14#
發(fā)表于 2025-3-24 01:48:22 | 只看該作者
Higher dimensionsUnlike surfaces, the use of the mean curvature flow in higher dimensions to prove isoperimetric inequalities is severely limited by the possibility of development of singularities. The reader is referred to Sinestrari’s course in this volume [113] for an updated discussion on these topics.
15#
發(fā)表于 2025-3-24 06:09:29 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:37 | 只看該作者
Mean Curvature Flow and Isoperimetric Inequalities978-3-0346-0213-6Series ISSN 2297-0304 Series E-ISSN 2297-0312
17#
發(fā)表于 2025-3-24 13:18:56 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:15 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:54 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪江市| 泗阳县| 香河县| 竹山县| 海原县| 右玉县| 遂溪县| 丰镇市| 金阳县| 安丘市| 新晃| 凤城市| 光山县| 深州市| 满洲里市| 延庆县| 厦门市| 福海县| 门头沟区| 绥棱县| 商河县| 翁源县| 青州市| 舒城县| 阳信县| 那曲县| 通江县| 德令哈市| 乌兰浩特市| 壶关县| 隆尧县| 山西省| 鹤山市| 吉林市| 塘沽区| 吉隆县| 和静县| 随州市| 济南市| 桐梓县| 兴安县|