找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mean Curvature Flow and Isoperimetric Inequalities; Manuel Ritoré,Carlo Sinestrari Textbook 2010 Birkh?user Basel 2010 Mean curvature.Mini

[復(fù)制鏈接]
查看: 7311|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:22:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mean Curvature Flow and Isoperimetric Inequalities
編輯Manuel Ritoré,Carlo Sinestrari
視頻videohttp://file.papertrans.cn/628/627977/627977.mp4
概述Unique book which examines advances on isoperimetric problems related with geometric flows and suggests some new directions in the interplay between the two subjects..First book to give an introductio
叢書名稱Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Mean Curvature Flow and Isoperimetric Inequalities;  Manuel Ritoré,Carlo Sinestrari Textbook 2010 Birkh?user Basel 2010 Mean curvature.Mini
描述.Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds..
出版日期Textbook 2010
關(guān)鍵詞Mean curvature; Minimal surface; Ricci flow; curvature; manifold
版次1
doihttps://doi.org/10.1007/978-3-0346-0213-6
isbn_softcover978-3-0346-0212-9
isbn_ebook978-3-0346-0213-6Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Mean Curvature Flow and Isoperimetric Inequalities影響因子(影響力)




書目名稱Mean Curvature Flow and Isoperimetric Inequalities影響因子(影響力)學(xué)科排名




書目名稱Mean Curvature Flow and Isoperimetric Inequalities網(wǎng)絡(luò)公開度




書目名稱Mean Curvature Flow and Isoperimetric Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mean Curvature Flow and Isoperimetric Inequalities被引頻次




書目名稱Mean Curvature Flow and Isoperimetric Inequalities被引頻次學(xué)科排名




書目名稱Mean Curvature Flow and Isoperimetric Inequalities年度引用




書目名稱Mean Curvature Flow and Isoperimetric Inequalities年度引用學(xué)科排名




書目名稱Mean Curvature Flow and Isoperimetric Inequalities讀者反饋




書目名稱Mean Curvature Flow and Isoperimetric Inequalities讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:19 | 只看該作者
Convexity estimatesurfaces do not necesnecessarily shrink to a point at the singular time. An important result in the analysis of these surfaces is the following estimate on the elementary symmetric polynomials of the curvatures, proved in [47].
板凳
發(fā)表于 2025-3-22 00:32:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:36:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:45:36 | 只看該作者
2297-0304 between the two subjects..First book to give an introductio.Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow
6#
發(fā)表于 2025-3-22 13:33:37 | 只看該作者
Textbook 2010in physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on
7#
發(fā)表于 2025-3-22 20:49:59 | 只看該作者
https://doi.org/10.1007/978-3-0346-0213-6Mean curvature; Minimal surface; Ricci flow; curvature; manifold
8#
發(fā)表于 2025-3-23 00:05:41 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:19 | 只看該作者
ExamplesThere are very few examples where the solution to the mean curvature flow can be explicitly computed, which we describe in the following.
10#
發(fā)表于 2025-3-23 07:04:36 | 只看該作者
Local existence and formation of singularitiesFor a geometric flow of the form (1.4) we have the following result, which ensures local existence and uniqueness of the solution under a suitable assumption on the initial data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐边县| 沙田区| 尼勒克县| 泰兴市| 横峰县| 商城县| 泗阳县| 铜梁县| 辉南县| 新竹县| 安龙县| 海城市| 泌阳县| 东兴市| 喀喇| 龙山县| 葵青区| 吴桥县| 阿鲁科尔沁旗| 崇左市| 新津县| 青岛市| 砀山县| 新安县| 绍兴市| 宜丰县| 牡丹江市| 台前县| 永济市| 中超| 报价| 湘潭县| 云和县| 绥中县| 五大连池市| 景谷| 会同县| 论坛| 都昌县| 阿瓦提县| 珠海市|